Preliminary study of Hair Cortisol Concentration (HCC) of Dogs before and after Surgery ็Hair cortisol concentration

Main Article Content

Kochakorn Direksin
Thanyaluk Srirat
Siwanart Juiboot
Soraya Khongthananet
Natthakorn Chaiyasaen
Suttisak Nopwinyoowong

Abstract

This study aimed to investigate hair cortisol concentration (HCC) of dogs pre- and post-surgery. Hair samples were cut at the scruff area of a dog in the specific days. Four healthy dogs were rotationally undergone 7 types of surgery, hair samples were collected on Day0 (before) and Day1-6. Hair samples of four non-surgical dogs were collected on Day1-35 (to pre-evaluate HCC baseline). HCC in the hair was determined by Radioimmunoassay kit (CORT-CT2 Test kit, Cisbio Bioassays Model24). HCC before/after surgery and between surgery types were similar. Non-surgical dogs had average HCC of 5.3 ± 0.2 (4.2-8.4) pg/mg.  Mean HCC of surgical dogs, pre-/post-operation were 5.8 ± 0.9 (4-7.3)/6.2 ± 0.5 (5.9-10.8) pg/mg. HCC results from an individual dog indicate that HCC surged in operations those; 1) incision of many areas, 2) Enterectomy in which dogs were fasted for a week, and 3) Caudal midline approach laparotomy as compared to Paracostal incision.  From our results, HCC is a promising tool for stress and pain assessments.

Article Details

How to Cite
Direksin, K., Srirat, T., Juiboot, S., Khongthananet, S., Chaiyasaen, N. and Nopwinyoowong, S. (2021) “Preliminary study of Hair Cortisol Concentration (HCC) of Dogs before and after Surgery: ็Hair cortisol concentration”, Journal of Mahanakorn Veterinary Medicine, 16(1), pp. 87–93. Available at: https://li01.tci-thaijo.org/index.php/jmvm/article/view/247506 (Accessed: 27 December 2024).
Section
Research Article

References

Barletta, M., C. N. Young, J. E. Quandt, and E. H. Hofmeister. 2016. Agreement between veterinary students and anesthesiologists regarding postoperative pain assessment in dogs. Vet. Anaesth. Analg. 43:91–98. doi:10.1111/vaa.12269. Available from: http://dx.doi.org/10.1111/vaa.12269

Bennett, A., and V. Hayssen. 2010. Measuring cortisol in hair and saliva from dogs : coat color and pigment differences. DAE. 39:171–180. doi:10.1016/j.domaniend.2010.04.003. Available from: http://dx.doi.org/10.1016/j.domaniend.2010.04.003

Campuzano, S., and Y. Paloma. 2017. Trends in Analytical Chemistry Electrochemical bioaf fi nity sensors for salivary biomarkers detection. 86:14–24. doi:10.1016/j.trac.2016.10.002.

Cardozo, L. B., L. C. Cotes, M. A. P. Kahvegian, M. F. C. I. Rizzo, D. A. Otsuki, C. R. A. Ferrigno, and D. T. Fantoni. 2014. Evaluation of the effects of methadone and tramadol on postoperative analgesia and serum interleukin-6 in dogs undergoing orthopaedic surgery. 1–7. doi:10.1186/s12917-014-0194-7.

Coetzee, J. F. 2011. A review of pain assessment techniques and pharmacological approaches to pain relief after bovine castration : Practical implications for cattle production within the United States. Appl. Anim. Behav. Sci. 135:192–213. doi:10.1016/j.applanim.2011.10.016. Available from: http://dx.doi.org/10.1016/j.applanim.2011.10.016

Diaz, S. F., S. M. F. Torres, R. W. Dunstan, and C. M. Lekcharoensuk. 2004. An analysis of canine hair re-growth after clipping for a surgical procedure. 25–30.

Driscoll, K. O., D. Lemos, D. O. Gorman, S. Taylor, and L. Ann. 2013. The influence of a magnesium rich marine supplement on behaviour , salivary cortisol levels , and skin lesions in growing pigs exposed to acute stressors. Appl. Anim. Behav. Sci. 145:92–101. doi:10.1016/j.applanim.2013.02.005. Available from: http://dx.doi.org/10.1016/j.applanim.2013.02.005

Epstein, M., I. Rodan, G. Griffenhagen, J. Kadrlik, M. Petty, S. Robertson, and W. Simpson. 2015. 2015 AAHA/AAFP pain management guidelines for dogs and cats. J. Am. Anim. Hosp. Assoc. 51:67–84. doi:10.5326/JAAHA-MS-7331.

Escribano, D., A. M. Gutiérrez, F. Tecles, and J. J. Cerón. 2015. Research in Veterinary Science Changes in saliva biomarkers of stress and immunity in domestic pigs exposed to a psychosocial stressor. YRVSC. 102:38–44. doi:10.1016/j.rvsc.2015.07.013. Available from: http://dx.doi.org/10.1016/j.rvsc.2015.07.013

Favarato, E. S. 2007. Hair cycle in dogs with different hair types in a tropical region of Brazil. 15–20. doi:10.1111/j.1365-3164.2007.00642.x.

Freeman, L. J., E. Y. Rahmani, M. Al-haddad, S. Sherman, M. V Chiorean, D. J. Selzer, P. W. Snyder, P. D. Constable, and B. Hons. 2010. Comparison of pain and postoperative stress in dogs undergoing natural orifice transluminal endoscopic surgery , laparoscopic , and open oophorectomy. YMGE. 72:373–380. doi:10.1016/j.gie.2010.01.066. Available from: http://dx.doi.org/10.1016/j.gie.2010.01.066

Greff, M. J. E., J. M. Levine, A. M. Abuzgaia, A. A. Elzagallaai, M. J. Rieder, and S. H. M. van Uum. 2019. Hair cortisol analysis: An update on methodological considerations and clinical applications. Clin. Biochem. 63. doi:10.1016/j.clinbiochem.2018.09.010.

Heimbürge, S., E. Kanitz, and W. Otten. 2019. The use of hair cortisol for the assessment of stress in animals. Gen. Comp. Endocrinol. 270:10–17. doi:10.1016/j.ygcen.2018.09.016.

Herane Vives, A., V. De Angel, A. Papadopoulos, R. Strawbridge, T. Wise, A. H. Young, D. Arnone, and A. J. Cleare. 2015. The relationship between cortisol, stress and psychiatric illness: New insights using hair analysis. J. Psychiatr. Res. 70. doi:10.1016/j.jpsychires.2015.08.007.

Hodes, A., M. B. Lodish, A. Tirosh, J. Meyer, E. Belyavskaya, C. Lyssikatos, K. Rosenberg, A. Demidowich, J. Swan, N. Jonas, C. A. Stratakis, and M. Zilbermint. 2017. Hair cortisol in the evaluation of Cushing syndrome. Endocrine. 56. doi:10.1007/s12020-017-1231-7.

Van Holland, B. J., M. H. W. Frings-Dresen, and J. K. Sluiter. 2012. Measuring short-term and long-term physiological stress eVects by cortisol reactivity in saliva and hair. Int. Arch. Occup. Environ. Health. 85. doi:10.1007/s00420-011-0727-3.

Ito, N., T. Ito, A. Kromminga, A. Bettermann, M. Takigawa, F. Kees, R. H. Straub, and R. Paus. 2005. Human hair follicles display a functional equivalent of the hypothalamic‐pituitary‐adrenal (HPA) axis and synthesize cortisol. FASEB J. 19. doi:10.1096/fj.04-1968fje.

Kalliokoski, O., F. K. Jellestad, and R. Murison. 2019. A systematic review of studies utilizing hair glucocorticoids as a measure of stress suggests the marker is more appropriate for quantifying short-term stressors. Sci. Rep. 1–14. doi:10.1038/s41598-019-48517-2. Available from: http://dx.doi.org/10.1038/s41598-019-48517-2

Kino, T. 2015. Stress, glucocorticoid hormones, and hippocampal neural progenitor cells: Implications to mood disorders. Front. Physiol. 6. doi:10.3389/fphys.2015.00230.

Kisani, A. I., T. Tughgba, and A. T. Elsa. 2018. Effects of various surgical procedures on biochemical parameters of Nigerian dogs and their clinical implications. 11:909–914. doi:10.14202/vetworld.2018.909-914.

Linden, J. B. B. 2018. Factors affecting hair cortisol, rank, and aggression in a large newly formed social group of captive rhesus macaques (Macaca mulatta).

Mesarcova, L., J. Kottferova, L. Skurkova, L. Leskova, and N. Kmecova. 2017. Analysis of cortisol in dog hair – a potential biomarker of chronic stress : a review. Vet. Med. (Praha). 2017:363–376. doi:10.17221/19/2017-VETMED.

Micale, V., and F. Drago. 2018. Endocannabinoid system, stress and HPA axis. Eur. J. Pharmacol. 834. doi:10.1016/j.ejphar.2018.07.039.

Nenadović, K., M. Vučinić, B. Radenković-Damnjanovic, L. Janković, R. Teodorović, E. Voslarova, and Z. Becskei. 2017. Cortisol concentration, pain and sedation scale in free roaming dogs treated with carprofen after ovariohysterectomy. Vet. World. 10:888–894. doi:10.14202/vetworld.2017.888-894.

Park, S. H., S. A. Kim, N. S. Shin, and C. Y. Hwang. 2016. Elevated cortisol content in dog hair with atopic dermatitis. Jpn. J. Vet. Res. 64. doi:10.14943/jjvr.64.2.123.

Pondeljak, N., and L. Lugović-Mihić. 2020. Stress-induced Interaction of Skin Immune Cells, Hormones, and Neurotransmitters. Clin. Ther. 42. doi:10.1016/j.clinthera.2020.03.008.

Salaberger, T., M. Millard, S. El Makarem, E. Möstl, V. Grünberger, R. Krametter-Frötscher, T. Wittek, and R. Palme. 2016. Influence of external factors on hair cortisol concentrations. Gen. Comp. Endocrinol. 233. doi:10.1016/j.ygcen.2016.05.005.

Sharpley, C. F., K. G. Kauter, and J. R. Mcfarlane. 2009. An Initial Exploration of in vivo Hair Cortisol Responses to a Brief Pain Stressor : Latency , Localization and Independence Effects. 8408:757–761.

Sharpley, C. F., K. G. Kauter, J. R. Mcfarlane, J. R. M. C. Farlane, and J. R. Mcfarlane. 2010. Hair cortisol concentration differs across site and person: Localisation and consistency of responses to a brief pain stressor. Physiol. Res. 59:979–983.

Slominski, A., J. Wortsman, R. C. Tuckey, and R. Paus. 2007. Differential expression of HPA axis homolog in the skin. Mol. Cell. Endocrinol. 265–266. doi:10.1016/j.mce.2006.12.012.

Slominski, R., C. R. Rovnaghi, and K. J. S. Anand. 2015. Methodological considerations for hair cortisol measurements in children. Ther. Drug Monit. 37. doi:10.1097/FTD.0000000000000209.

Srithunyarat, T., O. V. Höglund, R. Hagman, U. Olsson, M. Stridsberg, A. S. Lagerstedt, and A. Pettersson. 2016. temperature , heart rate , respiratory rate , scores of the short form of the Glasgow composite measure pain scale and visual analog scale for stress and pain behavior in dogs before and after ovariohysterectomy. BMC Res. Notes. 9:1–9. doi:10.1186/s13104-016-2193-1.

Stubsjøen, S. M., K. Sørheim, M. Chincarini, J. Bohlin, E. Brunberg, B. Fuchs, R. Palme, and L. Grøva. 2018. Exploring hair cortisone concentration as a novel tool to assess chronic stress in sheep with tick-borne fever. Small Rumin. Res. 164. doi:10.1016/j.smallrumres.2018.05.009.

Sundman, A. S., E. Van Poucke, A. C. Svensson Holm, Å. Faresjö, E. Theodorsson, P. Jensen, L. S. V. Roth, E. Van Poucke, A. S. Holm, and Å. Faresjö. 2019. Long-term stress levels are synchronized in dogs and their owners. Sci. Rep. 9:1–7. doi:10.1038/s41598-019-43851-x.

Walton, D. M., J. C. Macdermid, E. Russell, G. Koren, and S. Van Uum. 2013. Hair-normalized cortisol waking response as a novel biomarker of hypothalamic-pituitary-adrenal axis activity following acute trauma: A proof-of-concept study with pilot results. Pain Res. Treat. 2013. doi:10.1155/2013/876871.

Weaver, S. J., P. I. Hynd, C. R. Ralph, J. E. Hocking Edwards, C. L. Burnard, E. Narayan, and A. J. Tilbrook. 2021. Chronic elevation of plasma cortisol causes differential expression of predominating glucocorticoid in plasma, saliva, fecal, and wool matrices in sheep. Domest. Anim. Endocrinol. 74. doi:10.1016/j.domaniend.2020.106503.

Xiang, L., I. Sunesara, K. E. Rehm, G. D. M. Jr, L. Xiang, I. Sunesara, K. E. Rehm, G. D. M. Jr, L. Xiang, I. Sunesara, K. E. Rehm, and G. D. M. Jr. 2016. A modified and cost-effective method for hair cortisol analysis. 5804. doi:10.3109/1354750X.2015.1130748.