Effects of Substitution of Soybean Meal by Ulva rigida in Concentrate on Digestibility of Nutrition by using In Vitro Gas Production Technique

Main Article Content

Noratat Prachom
Sineenart Polyorach

Abstract

Effects of substitution of soybean meal by Ulva rigida on digestibility of nutrition by using in vitro gas production technique. The experimental design was completely randomized design (CRD) to study the levels of using U. rigida as a protein source substitute of soybean meal in concentrate at 0, 33, 67, and 100%. The results showed that the intercept value (a) was the highest at 100% substitution while, gas production rate constants for the insoluble fraction (c) was the highest at 0% substitution. In addition, gas production from the insoluble fraction (b),  potential extent of gas production (a+b) and cumulative gas production at 96 h and IVDMD were influenced (p<0.01) by increasing substitution levels and the highest at 67% substitution. However, U. rigida substitution at 0, 33 and 67% were higher than 100%. In conclusion, U. rigida could substitute soybean meal by could improve a, b, a+b, communitive of gas production at 96 h and IVDMD by 67% substitution was the  highest. However, the used of U. rigida in in vivo trial should be conducted.

Article Details

Section
Research Article

References

กรมปศุสัตว์, 2553ก ; 2553ข. การผลิตโคเนื้อในประเทศไทย แหล่งที่มา : https://research.psru.ac.th/files/res_che2553/resche_files/529_CUnit1.pdf, 8 กันยายน 2562.

มนทกานติ ท้ามติ้น ชัชวาลี ชัยศรี ประพัฒน์ กอสวัสดิ์พัฒน์ จีรรัตน์ เกื้อแก้ว และนฏา ไล้ทองคำ. 2559. คุณค่าทางโภชนาการของสาหร่ายผักกาดทะเล (Ulva rigida) และการประยุกต์ใช้เป็นวัตถุดิบในอาหารกุ้งขาว แวนนาไม (Litopenaeus vannamei Boone, 1931).

สุวรรณา วรสิงห์. 2551. ผลของความเค็มที่เหมาะสมต่อการเจริญเติบโตของสาหร่ายผักกาดทะเล.ศูนย์วิจัยและพัฒนาประมงชายฝั่งจันทบุรี.

A.O.A.C. 1990. Official Methods of Analysis of the Association of Official Analytical Chemists. Vol.1, 15th ed., Washington D.C.

Cyrus, M.D., J. B. John, D. W. Lourens and M. M. Brett. 2012. The development of a formulated feed containing Ulva (Chlorophyta) to promote rapid growth and enhanced production of high quality roe in the seaurchin T ripneustes gratilla (Linnaeus). Aquaculture. 1-18.

El-Deek A.A., and M. A. Brikaa. 2009. Nutritional and Biological Evaluation of Marine Seaweed as a Feedstuff and as a Pellet Binder in Poultry Diet. Poultry Science 8 (9): 875-881.

Kent, M., H. M. Welladsen, A. and Y. Li. Mangott. 2015. Nutritional evaluation of Australian microalgae as potential human health supplements, PLoS One. 10e0118985.

Margarida, R.G. M., J. M. F. António, P. C. Paulo, and R. J. C. Ana. 2019. In vitro evaluation of macroalgae as unconventional ingredients in ruminant animal feeds. Algal Research. 40: 50-313.

Menke, K.H. and H. Steingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev.28:9-55.

Ørskov, E.R. and P. McDonald. 1979. The estimation of protein degradability in the rumenfrom incubation measurements weighed according to rate of passage. J. Agric.Sci.,92, 499-503.

Tilley J.M.A. and Terry R.A. 1963. A two-stage technique for the in vitro digestion of forage crops Currents/Journal of the British Grassland Society. 18: 104-111.

Van Soest, P.J., J.B. Robertson. And B.A. Lewis. 1991. Methods for dietary fiber, neutral Detergent fiber, and non starch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74, 3583-3597.

Ratana-arporn, P. and Chirapart, A. 2006. Nutritional evaluation of tropical green seaweeds Caulerpa lentillifera and Ulva reticulata. Kasetsart Journal (Natural Science). 40: 75–83.

Ray, B. 2006. Polysaccharides from Enteromorpha compressa: Isolation, purification and structural features. Carbohyd. Polym. 6: 408-416.

SAS. 1998. User’s Guide: Statistics. SAS Inst. Inc., Cary, NC.

Steel, R.G.D. and Torrie J.H. 1980. Principles and Procedure of Statistics. New York: McGraw Hill Book Co.