The ผลของการเสริมไขมันไหลผ่านที่มีกรดไขมันโอเมก้า 3 ในอาหารต่อสมรรถนะการผลิตและองค์ประกอบของกรดไขมันในน้ำนมของโคระยะให้นม
Main Article Content
บทคัดย่อ
การเสริมไขมันไหลผ่านที่เป็นแหล่งของกรดไขมันโอเมก้า 3 เป็นแนวทางในการเพิ่มคุณภาพน้ำนมโค และส่งผลดีต่อสุขภาพของผู้บริโภค การวิจัยนี้จึงมีวัตถุประสงค์เพื่อศึกษาผลของการเสริมไขมันไหลผ่านที่มีกรดไขมันโอเมก้า 3 ต่อปริมาณและองค์ประกอบของน้ำนม กรดไขมันในน้ำนมและสารเมแทบอไลต์ในเลือดของโคนมระยะให้นม โดยใช้โคนมลูกผสมที่มีระดับสายเลือดโฮลสไตน์ฟรีเชียน > 87.5% จำนวน 8 ตัว จำนวนวันให้นมเฉลี่ย 62.50 ± 26.11 วัน วิเคราะห์ข้อมูลแบบเปรียบเทียบ 2 กลุ่มประชากรที่ไม่เป็นอิสระต่อกัน (Paired t-test) โดยในระยะที่ 1 หรือระยะก่อนทำการเสริมไขมัน (PRE) โคได้รับอาหารพื้นฐานประกอบด้วยอาหารข้นที่มีโปรตีน 16% ร่วมกับการเสริมกากนมถั่วเหลือง และอาหารหยาบ (เปลือกและซังข้าวโพดหวานหมัก และหญ้าเนเปียร์) ส่วนระยะที่ 2 (POST) โคได้รับอาหารพื้นฐานเช่นเดียวกับระยะที่ 1 ร่วมกับการเสริมไขมันไหลผ่านที่ระดับ 200 กรัม/ตัว/วัน ระยะเวลาในการทดลอง 8 สัปดาห์ โดยมีระยะปรับตัวก่อนเริ่มการทดลอง 14 วัน พบว่าปริมาณการกินได้ ปริมาณน้ำนมและองค์ประกอบน้ำนมของโคนมที่ได้รับอาหารระยะ PRE และ POST ไม่แตกต่างกันทางสถิติ (P>0.05) อย่างไรก็ตาม เมื่อเสริมไขมันไหลผ่านพบว่าระดับกลูโคสในเลือดเพิ่มขึ้น (P<0.01) ในขณะที่ความเข้มข้นของ NEFA และไตรกลีเซอไรด์ลดลงอย่างมีนัยสำคัญทางสถิติ (P<0.05) นอกจากนี้ การเสริมไขมันไหลผ่าน ทำให้ความเข้มข้นของกรดไขมันชนิดโอเมก้า 3 และกรดไขมันไม่อิ่มตัวในน้ำนมเพิ่มขึ้นแต่ไม่มีนัยสำคัญทางสถิติ (P>0.05) จากการศึกษาครั้งนี้แสดงให้เห็นว่าการเสริมไขมันไหลผ่านที่มีกรดไขมันโอเมก้า 3 ให้ผลเชิงบวกต่อสมดุลของพลังงาน และองค์ประกอบของกรดไขมันในน้ำนมของโคนม
Article Details

อนุญาตภายใต้เงื่อนไข Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
เอกสารอ้างอิง
เฉลา พิทักษ์สินสุข จริยา บุญจรัชชะ และจีรพัฒน์ วงศ์พิพัฒน์. 2553. การรวบรวมและจัดทำข้อมูลด้านคุณค่าทางโภชนะของพืชอาหารสัตว์. รายงานผลงานวิจัยประจำปี 2553. กองอาหารสัตว์ กรมปศุสัตว์ กระทรวงเกษตรและสหกรณ์. 77 หน้า
นวิญญา พิมพ์พา และดรุณี ศรีชนะ. 2020. คุณค่าทางโภชนะของกากนมถั่วเหลืองหมักโดย Aspergillus niger เพื่อใช้เป็นอาหารสัตว์. Thai Journal of Science and Technology 9(3): 290-297. doi: 10.14456/tjst.2020.19
บุญล้อม ชีวะอิสระกุล. 2541. ชีวเคมีทางสัตวศาสตร์. หน้า 116-143. ภาควิชาสัตว์ศาสตร์ คณะเกษตรศาสตร์ มหาวิทยาลัยเชียงใหม่
Abulaiti, A., Z. Naseer, Z. Ahmed, G. Hua, and L. Yang. 2022. Dietary provision of N-carbamoylglutamate to Holstein cows: A strategy to enhance the productive and reproductive efficiency during summer. Livestock Science: 104905.
Baker, E. J., E. A. Miles, G. C. Burdge, P. Yaqoob, and P. C. Calder. 2016. Metabolism and functional effects of plant-derived omega-3 fatty acids in humans. Progress in lipid research 64: 30-56.
Bargo, F., L. Muller, E. Kolver, and J. Delahoy. 2003. Invited review: Production and digestion of supplemented dairy cows on pasture. Journal of dairy science 86(1): 1-42.
Churakov, M., J. Karlsson, A. Edvardsson Rasmussen, and K. Holtenius. 2021. Milk fatty acids as indicators of negative energy balance of dairy cows in early lactation. Animal 15(7): 100253. doi: https://doi.org/10.1016/j.animal.2021.100253
Côrtes, C., D. da Silva-Kazama, R. Kazama, N. Gagnon, C. Benchaar, G. Santos, L. Zeoula, and H. Petit. 2010. Milk composition, milk fatty acid profile, digestion, and ruminal fermentation in dairy cows fed whole flaxseed and calcium salts of flaxseed oil. Journal of Dairy Science 93(7): 3146-3157.
González, Y. M., J. Iorio, M. F. Olmeda, D. Curletto, D. Scandolo, M. G. Maciel, A. Cuatrin, R. A. Palladino, C. Pérez, and E. E. Salado. 2020. Feeding Calcium Salts of Linseed Oil on Productive Performance and Milk Fatty Acid Profile in Grazing Dairy Cows. Open Journal of Animal Sciences 10(4): 761-781.
Grummer, R., and D. Carroll. 1991. Effects of dietary fat on metabolic disorders and reproductive performance of dairy cattle. Journal of Animal Science 69(9): 3838-3852.
Grummer, R. R. 1993. Etiology of lipid-related metabolic disorders in periparturient dairy cows. Journal of dairy science 76(12): 3882-3896.
Hara, A., and N. S. Radin. 1978. Lipid extraction of tissues with a low-toxicity solvent. Analytical biochemistry 90(1): 420-426.
Kawano, Y., and D. E. Cohen. 2013. Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. Journal of gastroenterology 48(4): 434-441.
Kim, T.-B., J.-S. Lee, S.-Y. Cho, and H.-G. Lee. 2020. In vitro and in vivo studies of rumen-protected microencapsulated supplement comprising linseed oil, vitamin E, Rosemary extract, and hydrogenated palm oil on rumen fermentation, physiological profile, milk yield, and milk composition in dairy cows. Animals 10(9): 1631.
Melville, J., D. Gygi, E. Zhou, and M. Jager. 2014. Bomb calorimetry and heat of combustion. UC Berkeley College of Chemistry
Mertens, D. 1988. Balancing carbohydrates in dairy rations. In: Large Herd Dairy Management Conference. p 150-161.
Moallem, U., H. Lehrer, L. Livshits, and M. Zachut. 2020. The effects of omega-3 α-linolenic acid from flaxseed oil
supplemented to high-yielding dairy cows on production, health, and fertility. Livestock Science 242:104302.
Mustafa, A., P. Chouinard, and D. Christensen. 2003. Effects of feeding micronised flaxseed on yield and composition of milk from Holstein cows. Journal of the Science of Food and Agriculture 83(9): 920-926.
Naik, P. K. 2013. Bypass fat in dairy ration-a review. Animal nutrition and feed technology 13(1): 147-163.
National Research Council. 2001. Nutrient requirements of dairy cattle: 2001. National Academies Press.
Ostrowska, E., F. R. Dunshea, M. Muralitharan, and R. F. Cross. 2000. Comparison of silver-ion high-performance liquid chromatographic quantification of free and methylated conjugated linoleic acids. Lipids 35(10): 1147-1153.
Palmquist, D., and T. Jenkins. 1980. Fat in lactation rations. Journal of dairy science 63(1): 1-14.
Palmquist, D., and T. Jenkins. 2017. A 100-Year Review: Fat feeding of dairy cows. Journal of dairy science 100(12): 10061-10077.
Petit, H., C. Germiquet, and D. Lebel. 2004. Effect of feeding whole, unprocessed sunflower seeds and flaxseed on milk production, milk composition, and prostaglandin secretion in dairy cows. Journal of Dairy Science 87(11): 3889-3898.
Rabiee, A., K. Breinhild, W. Scott, H. Golder, E. Block, and I. Lean. 2012. Effect of fat additions to diets of dairy cattle on milk production and components: A meta-analysis and meta-regression. Journal of dairy science 95(6): 3225-3247.
Resende, T., J. Kraft, K. Soder, A. Pereira, D. Woitschach, R. Reis, and A. F. Brito. 2015. Incremental amounts of ground flaxseed decrease milk yield but increase n-3 fatty acids and conjugated linoleic acids in dairy cows fed high-forage diets1. Journal of Dairy Science 98(7): 4785-4799.
Van Soest, P. v., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of dairy science 74(10): 3583-3597.
Zachut, M., A. Arieli, H. Lehrer, L. Livshitz, S. Yakoby, and U. Moallem. 2010. Effects of increased supplementation of n-3 fatty acids to transition dairy cows on performance and fatty acid profile in plasma, adipose tissue, and milk fat. Journal of dairy science 93(12): 5877-5889.