The Effects of Dry Yeast Supplementation on Rumen Ciliated Protozoa Population and Volatile Fatty Acid Production in Lactating Beef Cows

Authors

  • Wiruntita Bohman Faculty of Veterinary Science, Rajamangala University of Technology Srivijaya, Thungyai, Nakhon Si Thammarat 80240, Thailand.
  • Titipong Nokkeaw Srivijaya Agricultural Development Center, Rajamangala University of Technology Srivijaya, Pathio, Chumphon 86160, Thailand.
  • Supinya Chujai Faculty of Veterinary Science, Rajamangala University of Technology Srivijaya, Thungyai, Nakhon Si Thammarat 80240, Thailand.
  • Jirawan Kotcharat Faculty of Veterinary Science, Rajamangala University of Technology Srivijaya, Thungyai, Nakhon Si Thammarat 80240, Thailand.
  • Ratthasat Daorueng Faculty of Veterinary Science, Rajamangala University of Technology Srivijaya, Thungyai, Nakhon Si Thammarat 80240, Thailand.
  • Rutdanai Sriboonnak Faculty of Veterinary Science, Rajamangala University of Technology Srivijaya, Thungyai, Nakhon Si Thammarat 80240, Thailand.
  • Teerapong Muadsri Faculty of Agro-industry, Rajamangala University of Technology Srivijaya, Thungyai, Nakhon Si Thammarat 80240, Thailand.
  • Krittaya Nusai Faculty of Science and Technology, Rajamangala University of Technology Srivijaya, Thung Song, Nakhon Si Thammarat 80110, Thailand.

Keywords:

yeast, protozoa, ruminal pH, volatile fatty acid, beef cow

Abstract

This present study aims to assess the impact of supplementing dry yeast (Saccharomyces cerevisiae: SC) on ruminal ciliated protozoa and volatile fatty acid production in lactating beef cows. Nine lactating beef cows were divided into three groups: the control group (SC0) received a 16% protein commercial concentrate diet without yeast supplementation at 0.5% of body weight (BW) in kilograms, while the second (SC2) and third (SC4) groups were given the basal diet along with 2 or 4 grams per head/day of SC, respectively, plus 10% BW roughage for 21 days. At the last day of experiment, ruminal fluid was collected at 2 time points (0 and 4 h post-feeding) using rumenocentesis technique. The samples underwent analysis for ruminal pH, ciliated protozoa motility and population, and volatile fatty acids production. Results demonstrated that the SC2 group exhibited a lower pre-feeding ruminal pH compared with the other groups (P < 0.05), whereas the SC4 group displayed reduced protozoa motility (P < 0.05). Although the SC2 group tended to have a higher ciliated protozoa population, this difference was not statistically significant. Total VFA production was significantly elevated in the SC4 group (P < 0.05), and both the SC2 and SC4 groups exhibited increased total VFAs and acetate levels post-feeding. The SC2 group displayed significantly higher acetate:propionate and acetate:butyrate ratios compared to the other groups (P < 0.05). These findings suggest that dry yeast supplementation can modulate rumen fermentation through alterations in protozoal activity and VFA profiles, with potential implications for digestive efficiency and nutrient absorption in lactating beef cows.

References

Ambriz-Vilchis, V., Jessop, N.S., Fawcett, R.H., Webster, M., Shaw, D.J., Walker, N. and Macrae, A.I. 2017. Effect of yeast supplementation on performance, rumination time, and rumen pH of dairy cows in commercial farm environments. Journal of Dairy Science 100(7): 5449-5461.

Bach, A., Iglesias, C. and Devant, M. 2007. Daily rumen pH pattern of loose-housed dairy cattle as affected by feeding pattern and live yeast supplementation. Animal Feed Science and Technology 136(1-2): 146-153.

Besseboua, O., Benbarek, H., Hornick, J.L. and Ayad, A. 2020. Effect of yeast Saccharomyces cerevisiae feed supplement on milk production and its composition of lactating Holstein Friesian cows from Northern Algeria. Journal of Istanbul Veterinary Sciences 4(2): 64-74.

Castillo-González, A.R., Burrola-Barraza, M.E., Domínguez-Viveros, J. and Chávez-Martínez, A. 2014. Rumen microorganisms and fermentation. Archivos de Medicina Veterinaria 46(3): 349-361.

Chaucheyras‐Durand, F., Ameilbonne, A., Bichat, A., Mosoni, P., Ossa, F. and Forano, E. 2016. Live yeasts enhance fibre degradation in the cow rumen through an increase in plant substrate colonization by fibrolytic bacteria and fungi. Journal of Applied Microbiology 120(3): 560-570.

Choudhury, P.K., Salem, A.Z.M., Jena, R., Kumar, S., Singh, R. and Puniya, A. K. 2015. Rumen Microbiology : An Overview, pp. 3-16. In Puniya, A.K., eds. Rumen Microbiology: From Evolution to Revolution. Springer India.

Clarke, R.T.J. 1997. Protozoa in the rumen ecosystem, pp. 251-275. In Clarke, T.T.J. and Bauchop, T. eds. Microbial ecology of the gut. Academic Press, New York.

Dehority, B.A. 2005. Effect of pH on viability of Entodinium caudatum, Entodinium exiguum, Epidinium caudatum, and Ophryoscolex purkynjei in vitro. Journal of Eukaryotic Microbiology 52(4): 339-342.

Dehority, B.A. 2018. Laboratory manual for classification and morphology of rumen ciliate protozoa. CRC Press.

Diaz, T.G., Branco, A.F., Jacovaci, F.A., Jobim, C.C., Daniel, J.L.P., Bueno, A.V.I. and Ribeiro, M.G. 2018. Use of live yeast and mannan-oligosaccharides in grain-based diets for cattle: Ruminal parameters, nutrient digestibility, and inflammatory response. PLoS One 13(11): e0207127.

Dijkstra, J., Ellis, J.L., Kebreab, E., Strathe, A.B., López, S., France, J. and Bannink, A. 2012. Ruminal pH regulation and nutritional consequences of low pH. Animal Feed Science and Technology 172(1-2): 22-33.

Dijkstra, J., Van Gastelen, S., Dieho, K., Nichols, K. and Bannink, A. 2020. Review: Rumen sensors: Data and interpretation for key rumen metabolic processes. Animal 14 (supplement 1): s176-s186.

Ding, G., Chang, Y., Zhao, L., Zhou, Z., Ren, L. and Meng, Q. 2014. Effect of Saccharomyces cerevisiae on alfalfa nutrient degradation characteristics and rumen microbial populations of steers fed diets with different concentrate-to-forage ratios. Journal of animal science and biotechnology 5(1): 24.

Duffield, T., Plaizier, J.C., Fairfield, A., Bagg, R., Vessie, G., Dick, P., Wilson, J., Aramini, J. and McBride, B. 2004. Comparison of techniques for measurement of rumen pH in lactating dairy cows. Journal of Dairy Science 87(1): 59-66.

France, J. and Siddons, R.C. 1993. Volatile fatty acid production, pp. 157-175. In Dijkstra, J., Forbes, J.M. and France J., eds. Quantitative aspects of ruminant digestion and metabolism. (2nd ed). CABI Publishers.

Franzolin, R. and Dehority, B.A. 2010. The role of pH on the survival of rumen protozoa in steers. Revista Brasileira de Zootecnia 39: 2262-2267.

Galip, N. 2006. Effect of supplemental yeast culture and sodium bicarbonate on ruminal fermentation and blood variables in rams. Journal of animal physiology and animal nutrition 90(11-12): 446-452.

Humblot, P., Grimard, B., Freret, S., Charpigny, G., Ponter, A.A., Seegers, H.E.N.R.I., Ponsart, C., Garnsworthy, P.C. and Wiseman, J. 2008.

Impact of energy balance on metabolic changes and reproductive tissues; consequences for ovarian activity and fertility in dairy and beef cattle, pp. 1-14. In Garnsworthy, P.C., and Wiseman.J., eds. Recent Advance in Animal Nutrition. Nottingham University Press, Nottingham.

Kalmus, P., Orro, T., Waldmann, A., Lindjärv, R. and Kask, K. 2009. Effect of yeast culture on milk production and metabolic and reproductive performance of early lactation dairy cows. Acta Veterinaria Scandinavica 51(1): 32.

Kim, Y.H., Nagata, R., Ohkubo, A., Ohtani, N., Kushibiki, S., Ichijo, T. and Sato, S. 2018. Changes in ruminal and reticular pH and bacterial communities in Holstein cattle fed a high-grain diet. BMC Veterinary Research 14: 1-10.

Kowalik, B., Skomial, J., Pajak, J.J., Taciak, M., Majewska, M. and Belzecki, G. 2012. Population of ciliates, rumen fermentation indicators, and biochemical parameters of blood serum in heifers fed diets supplemented with yeast (Saccharomyces cerevisiae) preparation. Animal Science Papers and Reports 30(4): 329-338.

Li, M.M., White, R.R., Guan, L.L., Harthan, L. and Hanigan, M.D. 2021. Metatranscriptomic analyses reveal ruminal pH regulates fiber degradation and fermentation by shifting the microbial community and gene expression of carbohydrate-active enzymes. Animal Microbiome 3(1): 32.

Marden, J.P., Julien, C., Monteils, V., Auclair, E., Moncoulon, R. and Bayourthe, C. 2008. How does live yeast differ from sodium bicarbonate to stabilize ruminal pH in high-yielding dairy cows? Journal of Dairy Science 91(9): 3528-3535.

Moran, J. 2005. Tropical dairy farming: feeding management for small holder dairy farmers in the humid tropics. Landlinks Press, Victoria.

Newbold, C.J., De La Fuente, G., Belanche, A., Ramos-Morales, E. and McEwan, N.R. 2015. The role of ciliate protozoa in the rumen. Frontiers in Microbiology 6: 1313.

Ogimoto, K. and Imai, S. 1981. Atlas of rumen microbiology. Japan Scientific Societies Press, Tokyo.

Park, T., Wijeratne, S., Meulia, T., Firkins, J.L. and Yu, Z. 2021. The macronuclear genome of anaerobic ciliate Entodinium caudatum reveals its biological features adapted to the distinct rumen environment. Genomics 113(3): 1416-1427.

Patel, S. and Ambalam, P. 2018. Role of rumen protozoa: Metabolic and fibrolytic. Advance in Biotechnology and Microbiology 10(4): 79-84.

Phesatcha, K., Chunwijitra, K., Phesatcha, B., Wanapat, M. and Cherdthong, A. 2021. Addition of active dry yeast could enhance feed intake and rumen bacterial population while reducing protozoa and methanogen population in beef cattle. Fermentation 7(3): 172.

Shah, O.S., Shaheen, M., Bhat, R.A., Hussain, T. and Amin, U. 2018. Prevalence of Different Rumen Dysfunction in South down Sheep in Kashmir valley. International Journal of Livestock Research 8(3): 260-264.

Silberberg, M., Chaucheyras-Durand, F., Commun, L., Mialon, M.M., Monteils, V., Mosoni, P., Morgavi, D.P. and Martin, C. 2013.

Repeated acidosis challenges and live yeast supplementation shape rumen microbiota and fermentations and modulate inflammatory status in sheep. Animal 7(12): 1910-1920.

Szucs, J.P., Suli, A., Halasz, T., Arany, A. and Bodor, Z. 2013. Effect of live yeast culture Saccharomyces cerevisiae on milk production and some blood parameters. Scientific Papers Animal Science and Biotechnologies 46(1): 40-44.

Thrune, M., Bach, A., Ruiz-Moreno, M., Stern, M.D. and Linn, J.G. 2009. Effects of Saccharomyces cerevisiae on ruminal pH and microbial fermentation in dairy cows. Yeast supplementation on rumen fermentation. Livestock Science 124 (1-3): 261-265.

Wang, L., Abu-Doleh, A., Plank, J., Catalyurek, U.V., Firkins, J.L. and Yu, Z. 2019. The transcriptome of the rumen ciliate Entodinium caudatum reveals some of its metabolic features. BMC Genomics 20: 1-18.

Williams, P.E.V., Tait, C.A.G., Innes, G.M. and Newbold, C.J. 1991. Effects of the inclusion of yeast culture (Saccharomyces cerevisiae plus growth medium) in the diet of dairy cows on milk yield and forage degradation and fermentation patterns in the rumen of steers. Journal of Animal Science 69(7): 3016-3026.

Yalcin, S., Yalcin, S., Can, P., Gurdal, A.O., Bagci, C. and Eltan, O. 2011. The nutritive value of live yeast culture (Saccharomyces cerevisiae) and its effect on milk yield, milk composition and some blood parameters of dairy cows. Asian-Australasian Journal of Animal Sciences 24(10): 1377-1385.

Zhu, W., Wei, Z., Xu, N., Yang, F., Yoon, I., Chung, Y., Liu, J., Wang, J. 2017. Effects of Saccharomyces cerevisiae fermentation products on performance and rumen fermentation and microbiota in dairy cows fed a diet containing low quality forage. Journal of Animal Science and Biotechnology 8: 36.

Downloads

Published

2024-12-26

How to Cite

Bohman, W., Nokkeaw, T., Chujai, S., Kotcharat, J., Daorueng, R., Sriboonnak, R., Muadsri, T., & Nusai, K. (2024). The Effects of Dry Yeast Supplementation on Rumen Ciliated Protozoa Population and Volatile Fatty Acid Production in Lactating Beef Cows. Recent Science and Technology, 17(1), 261372. retrieved from https://li01.tci-thaijo.org/index.php/rmutsvrj/article/view/261372

Issue

Section

Research Article