Comparison of substrates for inoculum and spawn development to enhance mycelial growth of Dictyophora indusiata

Main Article Content

Natedara Chanutsa
Tipyaporn Klawvikon
Ekarin Photong
Punyisa Charirak

Abstract

Dictyophora indusiata is an economically important edible mushroom valued for its health benefits. However, production faces limitations due to extended cultivation periods for spawn and substrate preparation. This research compared materials for inoculum substrate using four cereal grains (sorghum, paddy rice, corn, and mung bean) and three sawdust-based substrate formulations to reduce spawn expansion time. The experiment comprised two parts: (1) inoculum substrate from cereal grains using completely randomized design with 5 replications, incubated at 28°C, with mycelium growth evaluated after 40 days, and (2) sawdust spawn production in greenhouse using randomized complete block design with 3 replications, measuring weekly mycelium growth for 7 weeks. The results showed that sorghum was the most suitable substrate for inoculum production, yielding 92.90% mycelial growth, which was significantly higher than other grains (p ≤ 0.01). For spawn bag development, Formulations 1 and 2 provided the best results, with mycelium fully colonizing the 16 cm substrate bags within 49 days. Formulation 1 consisted of sawdust, lime, Epsom salt, pumice, gypsum, molasses, and fine rice bran, while Formulation 2 contained sawdust, lime, Epsom salt, pumice, gypsum, rice flour, and fine rice bran. Formulation 3, composed of sawdust, lime, Epsom salt, pumice, gypsum, ground Leucaena meal, distillers’ grain, and fine rice bran, resulted in slightly lower growth at 13.63 cm.

Downloads

Download data is not yet available.

Article Details

How to Cite
Chanutsa, N. ., Klawvikon, T. ., Photong, E. ., & Charirak, P. (2025). Comparison of substrates for inoculum and spawn development to enhance mycelial growth of Dictyophora indusiata. Kalasin University Journal of Science Technology and Innovation, 4(2), 113–121. https://doi.org/10.14456/ksti.2025.16
Section
Research Articles

References

Yang, N., D. Wang, X. Li, H. Li, S. Luo, K. Zhang and P. Luo. 2024. The fungi of Dictyophora genus and its by-products: Recent progress towards the development of novel food formulations. Food Bioscience 60: 104126.

Chen, M.M. 2000. Cultivation techniques for Dictyophora, Polyporus umbellata and Coprinus comatus. In: Van Griensven, L.J.L.D. (ed.). Science and Cultivation of Edible Fungi. Balkema, Rotterdam. pp. 543–549.

Deng, C., H.T. Fu, L.P. Teng, Z. Hu, X.F. Xu, J.H. Chen and T. Ren. 2013. Anti-tumor activity of the regenerated triple-helical polysaccharide from Dictyophora indusiata. International Journal of Biological Macromolecules 61: 453–458.

Kanwal, S., S. Aliya and Y. Xin. 2020. Anti-obesity effect of Dictyophora indusiata mushroom polysaccharide (DIP) in high-fat-diet-induced obesity via regulating inflammatory cascades and intestinal microbiome. Frontiers in Endocrinology 11: 558874.

Lin, C.Q., H. Zhang, L.J. Chen, Y. Fang and J.C. Chen. 2021. Immunoregulatory function of Dictyophora echinovolvata spore polysaccharides in immunocompromised mice induced by cyclophosphamide. Open Life Sciences 16(1): 620–629.

Nazir, Y., P. Linsaenkart, C. Khantham, T. Chaitep, P. Jantrawut, C. Chittasupho, P. Rachtanapun, K. Jantanasakulwong, Y. Phimolsiripol, S.R. Sommano, J. Tocharus, S. Mingmalairak, A. Wongsa, C. Arjin, K. Sringarm, H. Berrada, F.J. Barba and W. Ruksiriwanich. 2021. High-efficiency in vitro wound healing of Dictyophora indusiata extracts via anti-inflammatory and collagen-stimulating (MMP-2 inhibition) mechanisms. Journal of Fungi 7(12): 1100.

Kawagishi, H., D. Ishiyama, H. Mori, H. Sakamoto, Y. Ishiguro, S. Furukawa and J. Li. 1997. Dictyophorines A and B, two stimulators of NGF-synthesis from the mushroom Dictyophora indusiata. Phytochemistry 45(6): 1203–1205.

Wang, L., Z.Z. Zhang, Z. Zeng, Y. Lin, B. Xiong, B. Zheng, Y. Zhang and L. Pan. 2024. Structural characterization of polysaccharide from an edible fungus Dictyophora indusiata and the remodel function of gut microbiota in inflammatory mice. Carbohydrate Polymers 351: 123141.

สุวลักษณ์ ชัยชูโชติ. 2558. โครงการวิจัยที่ 1: วิจัยและพัฒนาเห็ดเศรษฐกิจสายพันธุ์ใหม่. 12-221. ใน: รายงานชุดโครงการวิจัยและพัฒนาเห็ด 2558 กรมวิชาการเกษตร.

สำนักงานเกษตรและสหกรณ์ จังหวัดสุราษฎร์ธานี. 2565. แหล่งข้อมูล: https://www.opsmoac.go.th/suratthani-article_prov-preview-441191791809 สืบค้นเมื่อ 2 ธันวาคม 2567

Royse, D.J. and C.C. Bahler. 1986. Effects of genotype, spawn run time, and substrate formulation on biological efficiency of shiitake. Applied and Environmental Microbiology 52(6): 1425–1427.

อภิชญา วัฒนกุลขจร. 2560. ลักษณะจุลชีพในกากเหล้าจากการผลิตเหล้าข้าวและผลต่อความปลอดภัยของอาหารสัตว์. วารสารวิทยาศาสตร์การเกษตรไทย. 50(3): 45–52.

Muswati, C., K. Simango, L. Tapfumaneyi, M. Mutetwa and W. Ngezimana. 2021. The effects of different substrate combinations on growth and yield of oyster mushroom (Pleurotus ostreatus). International Journal of Agronomy 2021: 1–10.

Zubairi, S.I., N.A.S.M. Zabidi, Z.Z. Azman, S.N.D.M. Kamaruddin, Z.M. Kasim, A.M. Lazim, Z. Nurzahim and M.S.M. Jamil. 2022. Pleurotus ostreatus cultivation: physico-chemical characteristics of a robust pre-blocks oyster mushroom substrate with absorptive starch binders. Sains Malaysiana 51(2): 329–343.

Josephat, O., C. Onyeke and N. Chiejina. 2020. Evaluation of some organic substrates for the growth and yield of oyster mushroom Pleurotus ostreatus (Jacq. Fr.) Kumm in southeast Nigeria. Deleted Journal 18(1): 1085–1093.