A Review: Conversion of Glycerol to Solketal

Main Article Content

Natthanan Ruenkhamchan
Patcharapa Kitima
Sujinda Sangsarawatt
Pesak Rungrojchaipon

Abstract

Biodiesel is becoming an important biofuel that gain worldwide attention. It is normally produced through the transesterification of triglyceride with alcohol, yielding glycerol as the by-product. As a drawback, increase in biodiesel production has lead to an increase in availability of glycerol. Therefore, there are many research topics focused on the study of converting glycerol into a more valuable and higher price product. The synthesis of solketal from glycerol is another option to increase the value of glycerol. This article has gathered information related to the synthesis of solketal from glycerol using catalysts such as resin, mesoporous silica, clay minerals, hierarchical zeolite, activated carbon and different experimental conditions from various research, to achieve effective conversion of glycerol and selectivity of solketal.

Article Details

How to Cite
Ruenkhamchan, N., Kitima, P., Sangsarawatt, S., & Rungrojchaipon, P. (2022). A Review: Conversion of Glycerol to Solketal. Journal of Science Ladkrabang, 31(2), 1–18. Retrieved from https://li01.tci-thaijo.org/index.php/science_kmitl/article/view/251948
Section
Academic article

References

Future Market Insights. 2021. Global Solketal Market: Introduction and Dynamics. แหล่งข้อมูล : https://www.futuremarketinsights.com/reports/solketal-market. ค้นเมื่อวันที่ 24 พฤษภาคม 2564.

Absolute Report. 2021. Solketal (CAS 100-79-8) Market Size 2021 Research Report Segmented by Manufacturers, Geography Regions, Trends, Opportunities and Forecasts to 2024. แหล่งข้อมูล : https://www.ktvn.com/story/43667667/solketal-cas-100-79-8-market-size-2021-research-report-segmented-by-manufacturers-geography-regions-trends-opportunities-and-forecasts-to-2024-says. ค้นเมื่อวันที่ 24 พฤษภาคม 2564.

Narin Tunpaiboon. 2564. แนวโน้มธุรกิจ/อุตสาหกรรม ปี 2564-2566: อุตสาหกรรมไบโอดีเซล. แหล่งข้อมูล : https://www.krungsri.com/th/research/industry/industry-outlook/Energy-Utilities/Biodiesel/IO/io-biodiesel-21. ค้นเมื่อวันที่ 24 พฤษภาคม 2564.

American Chemical Society. 2021. Molecule of the Week Archive Isopropylidene glycerol. แหล่งข้อมูล : https://www.acs.org/content/acs/en/molecule-of-the-week/archive/i/isopropylideneglycerol.html. ค้นเมื่อวันที่ 26 พฤษภาคม 2564.

Cornejo, A., Campoy, M., Barrio, I., Navarrete, B. and Lazaro, J. 2019. Solketal production in a solvent-free continuous flow process: scaling from laboratory to bench size. React. Chem. Eng.

Khodadadi, M.R., Thiel, J., Varma, R.S. and Len, C. 2021. Innovative continuous synthesis of solketal. Journal of Flow Chemistry.

Fatimah, I., Sahroni, I., Fadillah, G., Musawwa, M.M., Mahlia, T.M.I. and Muraza, O. 2019. Glycerol to Solketal for Fuel Additive: Recent Process in Heterogeneous Catalysts. Energies, 12(15), 2872.

Nanda, M.R., Yuan, Z., Qin, W., Ghaziaskar, H.S., Poirier, M.-A. and Xu, C.C. 2014. Thermodynamic and Kinetic studies of a catalytic process to convert glycerol into solketal as an oxygenated fuel additive. Fuel, 117, 470-477.

Yang, J., Li, N., Ma, W.J., Zhou, J.H. and Sun, H.Z. 2013. Synthesis of Solketal with Catalyst Sulfonic Acid Resin. Adv. Mater. Res., 830, 176-179.

Ilgen, O., Yerlikaya, S. and Akyurek, F.O. 2016. Synthesis of Solketal from Glycerol and Acetone over Amberlyst-46 to Produce an Oxygenated Fuel Additive. Period. Polytech. Chem. Eng., 61(2), 144-148.

Guidi, S., Noè, M., Riello, P., Perosa, A. and Selva, M. 2016. Towards a Rational Design of a Continuous-Flow Method for the Acetalization of Crude Glycerol: Scope and Limitations of Commercial Amberlyst 36 and AlF3⋅3H2O as Model Catalysts. Molecules, 21(5), 657.

Oliveira, P.A., Souza, R.O.M.A. and Mota, C.J.A. 2016. Atmospheric Pressure Continuous Production of Solketal from the Acid-Catalyzed Reaction of Glycerol with Acetone. J. Braz. Chem. Soc., 27, 10, 1832-1837.

Vicente, G., Melero, J.A., Morales, G., Paniagua, M. and Martin, E. 2010. Acetalisation of bio-glycerol with acetone to produce solketal over sulfonic mesostructured silicas. Green Chemistry, 12(5), 899.

Li, L., Koranyi, T.I., Sels, B.F. and Pescarmona, P.P. 2012. Highly-efficient conversion of glycerol to solketal over heterogeneous Lewis acid catalysts. Green Chemistry, 14(6), 1611-1619.

Churipard, S.R., Manjunathan, P., Chandra, P., Shanbhag, G.V., Ravishankar, R., Rao, P.V.C., Sri Ganesh, G., Halgeri, A.B. and Maradur, S.P. 2017. Remarkable catalytic activity of a sulfonated mesoporous polymer (MP-SO3H) for the synthesis of solketal at room temperature. New J. Chem., 41(13), 5745-5751.

Chen, L., Nohair, B., Zhao, D. and Kaliaguine, S. 2018. Highly Efficient Glycerol Acetalization over Supported Heteropoly Acid Catalysts. ChemCatChem, 10(8), 1918-1925.

Nanda, M.R., Yuan, Z., Qin, W., Ghaziaskar, H.S., Poirier, M.-A. and Xu, C. 2014. A new continuous-flow process for catalytic conversion of glycerol to oxygenated fuel additive: Catalyst screening. Appl. Energy, 123, 75-81.

Sandesh, S., Halgeri, A.B. and Shanbhag, G.V. 2015. Utilization of renewable resources: Condensation of glycerol with acetone at room temperature catalyzed by organic–inorganic hybrid catalyst. J. Mol. Catal. A Chem., 401, 73-80.

Timofeeva, M.N., Panchenko, V.N., Krupskaya, V.V., Gil, A. and Vicente, M.A. 2017. Effect of nitric acid modification of montmorillonite clay on synthesis of solketal from glycerol and acetone. Catalysis Communication, 90, 65-69.

Zahid, I., Ayoub, M., Abdullah, B.B., Nazir, M.H. and Zulqarnain. 2020. Glycerol Derivatives as Fuel Additive: Synthesis of Solketal From Glycerol and Acetone With Various Acid Clay Catalysts. Advances in Engineering Research, 200, 292-296.

Manjunathan, P., Maradur, S.P., Halgeri, A.B. and Shanbhag, G.V. 2015. Room temperature synthesis of solketal from acetalization of glycerol with acetone: Effect of crystallite size and the role of acidity of beta zeolite. J. Mol. Catal. A Chem., 396, 47-54.

Kowalska-Kus, J., Held, A. and Nowinska, K. 2015. Enhancement of the catalytic activity of H-ZSM-5 zeolites for glycerol acetalization by mechanical grinding. React. Kinet. Mech. Catal., 117(1), 341-352.

Venkatesha, N.J., Bhat, Y.S. and Prakash, B.S.J. 2016. Dealuminated BEA zeolite for selective synthesis of five-membered cyclic acetal from glycerol under ambient conditions. RSC Adv., 6(23), 18824-18833.

Rossa, V., Pessanha, Y.D.S.P., Diaz, G.C., Camara, L.D.T., Pergher, S.B.C. and Aranda, D.A.G. 2017. Reaction Kinetic Study of Solketal Production from Glycerol Ketalization with Acetone. Ind. Eng. Chem. Res., 56(2), 479-488.

Rossa, V., Chenard Díaz, G., Juvenal Muchave, G., Alexandre Gomes Aranda, D. and Berenice Castellã Pergher, S. 2019. Production of Solketal Using Acid Zeolites as Catalysts. Glycerine Production and Transformation - An Innovative Platform for Sustainable Biorefinery and Energy.

Khayoon, M.S. and Hameed, B.H. 2013. Solventless acetalization of glycerol with acetone to fuel oxygenates over Ni–Zr supported on mesoporous activated carbon catalyst. Appl. Catal. A Gen., 464-465, 191-199.

Rodrigues, R., Goncalves, M., Mandelli, D., Pescarmona, P.P. and Carvalho, W.A. 2014. Solvent-free conversion of glycerol to solketal catalysed by activated carbons functionalised with acid groups. Catal. Sci. Technol., 4(8), 2293-2301.

Goncalves, M., Rodrigues, R., Galhardo, T.S. and Carvalho, W.A. 2016. Highly selective acetalization of glycerol with acetone to solketal over acidic carbon-based catalysts from biodiesel waste. Fuel, 181, 46-54.

ณัฐวรา พูลผล, นภสร สุนทร และอังคณา เจริญจิตร์. 2563. การสังเคราะห์โซลคีตอลจากกลีเซอรอล. โครงงานพิเศษวิทยาศาสตร์บัณฑิต, สาขาเคมีอุตสาหกรรม, สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง. [Nutwara Poolpol, Napasorn Soonthorn and Aungkana Charenchit. 2020. Synthesis of solketal from glycerol. B.Sc. Special Project, Industrial Chemistry Program, King Mongkut’s Institute of Technology Ladkrabang. (in Thai)]

Jaspreet, K., Anil, K.S., Poonam, G. and Mithilesh, K.J. 2021. Process optimization with acid functionalized activated carbon derived from corncob for production of 4-hydroxymethyl-2,2-dimethyl-1,3-dioxolane and 5-hydroxy-2,2-dimethyl-1,3-dioxane. Scientific Reports, 11, 8567.