Rapid Aqueous Dye Adsorption Using Carbon Powder Derived from Agricultural Waste of Coconut in Bangtalad Sub-district, Chachoengsao Province
Main Article Content
Abstract
This research emphasizes the significance of dye contaminants in industrial textile wastewater and their potential impact on health and the environment. The study aims to investigate the efficiency of low-cost carbon adsorbents derived from coconut waste through a single-step carbonization process for removing dye from aqueous solutions. The preparation of carbon powder from agriculture coconut waste, including coconut husk, young coconut shell and mature coconut shell, involves carbonization in a vertical furnace with a capacity of 200 L at a temperature of 600ºC for four hours. The characteristics of the carbon adsorbents derived from coconut waste were compared with commercially activated carbon powder. The crystalline structure was analyzed by X-ray Diffractometer (XRD), while the surface morphology and elemental composition were examined with a Scanning Electron Microscope (SEM) and Energy Dispersive Spectrometry (EDS). The results revealed that the carbon from coconut waste exhibited a carbon structure similar to commercial activated carbon. The surface morphology showed average surface pore size of 23.45±0.69, 4.72±0.17, 4.22±0.19, and N/A micrometers for coconut husk, young coconut shell, mature coconut shell and commercial activated carbon, respectively. Elemental analysis indicated that all the carbon materials mainly consisted of carbon and oxygen as the major components, with less than 2.84% impurities occurring in the carbonization process. The adsorption performance of methylene blue using carbon materials as adsorbents revealed that the suitable contact time was 15 minutes. The carbon waste from mature coconut shells and commercial activated carbon exhibited removal efficiencies of 94.78% and 97.38%, respectively. Despite a small difference in removal efficiency at 2.70%, indicating that the adsorption efficiency was similar to the commercial activated carbon. The pseudo-first-order reaction kinetics based on Lagergren's equation exhibited a similar value of 0.02968 min-1, comparable to the commercial activated carbon's value of 0.03775 min-1. However, efficient resource utilization focuses on the environmental, particularly in Chachoengsao Province. Additionally, efforts are being made to use low-cost waste materials from the community to be used as adsorbents for dye removal in wastewater treatment.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Yang, J. and Qiu, K. 2010. Preparation of activated carbons from walnut shells via vacuum chemical activation and their application for methylene blue removal. Chemical Engineering Journal, 165(1), 209-217, https://doi.org/10.1016/j.cej.2010.09.019.
Bergna, D., Varila, T., Romar, H. and Lassi, U. 2018. Comparison of the properties of activated carbons produced in one-stage and two-stage processes. Journal of carbon research, 4(3), 1-10, https://doi.org/10.3390/c4030041.
De Souza, C.C. et al. 2022. Activated carbon of Coriandrum sativum for adsorption of methylene blue: Equilibrium and kinetic modeling. Cleaner Materials, 3, 100052, https://doi.org/10.1016/j.clema.2022.100052.
Sujiono, E.H., Zabrian, D., Zharvan, V. and Humairah, N.A. 2022. Fabrication and characterization of coconut shell activated carbon using variation chemical activation for wastewater treatment application. Results in Chemistry, 4, 100291, https://doi.org/10.1016/j.rechem.2022.100291.
Dungani, R., Munawar, S.S., Karliati, T., Malik, J. and Aditiawati, P. 2022. Study of Characterization of activated carbon from coconut shells on various particle scales as filler agent in composite materials. Journal of the Korean Wood Science and Technology, 50(4), 256-271, https://doi.org/10.5658/WOOD.2022.50.4.256.
เจนจิรา ภูริรักษ์พิติกร, กิตติยา ปลื้มใจ, วรินดา เฟื่องชูนุช และ แหลมทอง ชื่นชม. 2022. การเพิ่มประสิทธิภาพ การดูดซับสีย้อมเมทิลลีนบลูในน้ำด้วยถ่านกัมมันต์ที่มีรูพรุนเมโซพอร์จากเหง้ามัน สำปะหลังที่เตรียมด้วยกระบวนการไฮโดรเทอร์มอลคาร์บอไนเซชันแบบหม้อเดียว. วารสาร วิทยาศาสตร์ประยุกต์ กรมวิทยาศาสตร์บริการ, 11(11), 45-56, https://doi.org/10.60136/bas.v11.2022.129. [Jenjira Phuriragpitikhon, Kittiya Pluamjai, Warinda Fuangchoonuch, Laemthong Chuenchom. 2022. Enhancing adsorption efficiency of methylene blue from water using cassava rhizome-derived mesoporous activated carbons prepared via one-pot hydrothermal carbonization. Bulletin of Applied Sciences, Natural Resources and Environment, 1(11), 45-56, https://doi.org/10.60136/bas.v11.2022.129. (in Thai)]
สำนักงานเกษตรและสหกรณ์ จังหวัดฉะเชิงเทรา. 2566. ข้อมูลพื้นฐานของจังหวัดฉะเชิงเทรา. แหล่งข้อมูล : https://www.opsmoac.go.th/chachoengsao-home. ค้นเมื่อวันที่ 18 ตุลาคม2566.
Ramutshatsha-Makhwedzha, D., Mavhungu, A., Moropeng, M.L. and Mbaya, R. 2022. Activated carbon derived from waste orange and lemon peels for the adsorption of methyl orange and methylene blue dyes from wastewater. Heliyon, 8(8), 1-9, https://doi.org/10.1016/j.heliyon.2022.e09930.
Taer, E. et al. 2018. Activated carbon electrode made from coconut husk waste for supercapacitor application. International Journal of Electrochemical Science, 13(12), 12072-12084, https://doi.org/10.20964/2018.12.19.
Mopoung, S. 2008. Surface image of charcoal and activated charcoal from banana peel. Journal of Microscopy Society of Thailand, 22, 15-19.
Husin, H., Abubakar, A., Ramadhani, S., Sijabat, C.F.B. and Hasfita, F. 2018. Coconut husk ash as heterogenous catalyst for biodiesel production from cerbera manghas seed oil. MATEC web of conferences, 197, 09008, https://doi.org/10.1051/matecconf/201819709008.
Satheesh, M., Pugazhvadivu, M., Prabu, B., Gunasegaran, V. and Manikandan, A. 2019. Synthesis and characterization of coconut shell ash. Journal of Nanoscience and Nanotechnology, 19(7), 4123-4128, https://doi.org/10.1166/jnn.2019.16299.
Wang, J. and Guo, X. 2020. Adsorption kinetic models: Physical meanings, applications, and solving methods. Journal of Hazardous materials, 390, 122156, https://doi.org/10.1016/j.jhazmat.2020.122156.
Xie, Z., Guan, W., Ji, F., Song, Z. and Zhao, Y. 2014. Production of biologically activated carbon from orange peel and landfill leachate subsequent treatment technology. Journal of chemistry, 91912, 1-9, http://dx.doi.org/10.1155/2014/491912.
Abbas, M. and Trari, M. 2020. Removal of methylene blue in aqueous solution by economic adsorbent derived from apricot stone activated carbon. Fibers and Polymers, 21(4), 810-820, http://dx.doi.org/10.1007/s12221-020-8630-8.
Jawad, A.H. et al. 2017. Microwave-assisted preparation of mesoporous-activated carbon from coconut (Cocos nucifera) leaf by H3PO4 activation for methylene blue adsorption. Chemical Engineering Communications, 204(10), 1143-1156, https://doi.org/10.1080/00986445.2017.1347565.
Tan, I.A.W., Ahmad, A.L. and Hameed, B.H. 2008. Adsorption of basic dye using activated carbon prepared from oil palm shell: batch and fixed bed studies. Desalination, 225(1-3), 13-28, https://doi.org/10.1016/j.desal.2007.07.005.
Jawad, A.H., Sauodi, M.H., Mastuli, M.S., Aouda, M.A. and Radzun, K.A. 2018. Pomegranate peels collected from fresh juice shop as a renewable precursor for high surface area activated carbon with potential application for methylene blue adsorption. Desalination and Water Treatment, 124(4), 287-296, https://doi.org/10.5004/dwt.2018.22725.
Junlabhut, P., Wattanawikkam, C., Mekprasart, W. and Pecharapa, W. 2018. Effect of Metal (Mn, Co, Zn, Ni) Doping on Structural, Optical and Photocatalytic Properties of TiO2 Nanoparticles Prepared by Sonochemical Method. Journal of Nanoscience and Nanotechnology, 18(10), 7302-7309, https://doi.org/10.1166/jnn.2018.15717.
Ohno, T., Tokieda, K., Higashida, S. and Matsumura, M. 2003. Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene. Applied Catalysis A: General, 244(2), 383-391, https://doi.org/10.1016/S0926-860X(02)00610-5.
Liao, Y. et al. 2012. Controllable synthesis of brookite/anatase/rutile TiO2 nanocomposites and single-crystalline rutile nanorods array. Journal of Materials Chemistry, 22(16), 7937-7944.
Sultana, M., Rownok, M.H., Sabrin, M., Rahaman, M.H. and Alam, S.N. 2022. A review on experimental chemically modified activated carbon to enhance dye and heavy metals adsorption. Cleaner engineering and technology, 6, 1-14, https://doi.org/10.1016/j.clet.2021.100382.
Shafeeyan, M.S., Daud, W.M.A.W., Houshmand, A. and Shamiri, A. 2010. A review on surface modification of activated carbon for carbon dioxide adsorption. Journal of Analytical and Applied Pyrolysis, 89(2), 143-151, https://doi.org/10.1016/j.jaap.2010.07.006.