Chemical Composition and Antibacterial Activity of Plant Essential Oils against Human Pathogenic Bacteria

Main Article Content

Apichart Hirunsuk
Oratai Sukcharoen

Abstract

In this study, the chemical composition and antibacterial properties of plant essential oils (Citrus hystrix leaves, Citrus maxima peels, Cymbopogon citratus (DC) Stapf leaves, Illicium verum Hooker seeds, and Syzygium aromaticum L. flower buds) were evaluated against human pathogenic bacteria. GC-MS was used to determine the composition of the essential oils, which were produced using hydrodistillation. The main constituents of Citrus hystrix and Citrus maxima essential oils were citronellal, while Cymbopogon citratus (DC) Stapf, Illicium verum Hooker, and Syzygium aromaticum L. essential oils were geraniol, anethole, and eugenol, respectively. Based on the results of the disc diffusion method, the essential oil of Syzygium aromaticum L. inhibited all three bacterial strains (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, and Staphylococcus aureus ATCC 25923) with MICs of 0.234 to 0.938 mg/ml and MBCs of 0.469 to 1.875 mg/ml, which is less than gentamicin (MICs and MBCs of 0.117-0.938 mg/ml). Syzygium aromaticum L. essential oil exhibited the lowest MIC against E. coli ATCC 25922 (0.234 mg/ml), while Cymbopogon citratus essential oil showed the lowest MIC against S. aureus ATCC 25923 (0.117 mg/ml), the same MIC as gentamicin. All essential oils exhibited a bactericidal effect with an MBC/MIC ratio ranging from 1.0 to 2.0.

Article Details

How to Cite
1.
Hirunsuk A, Sukcharoen O. Chemical Composition and Antibacterial Activity of Plant Essential Oils against Human Pathogenic Bacteria. PBRU.Sci.J [internet]. 2025 Jul. 1 [cited 2025 Dec. 8];22(1):67-82. available from: https://li01.tci-thaijo.org/index.php/scijPBRU/article/view/266886
Section
Articles

References

Soni J, Sinha S, Pandey R. Understanding bacterial pathogenicity: a closer look at the journey of harmful microbes. Front Microbiol 2024;15:1370818.

Antonelli G, Cappelli L, Cinelli P, Cuffaro R, Manca B, Nicchi S, et al. Strategies to tackle antimicrobial resistance: the example of Escherichia coli and Pseudomonas aeruginosa. Int J Mol Sci 2023;22:4943.

Ena J, Arjona F, Martínez-Peinado C, López-Perezagua MM, Amador C. Epidemiology of urinary tract infections caused by extended-spectrum beta-lactamase-producing Escherichia coli. Urology 2006;68:1169-74.

Kunz Coyne AJ, El Ghali A, Holger D, Rebold N, Rybak MJ. Therapeutic Strategies for Emerging Multidrug-Resistant Pseudomonas aeruginosa. Infect Dis Ther 2022;11:661-82.

Stryjewski ME, Corey GR. Methicillin-Resistant Staphylococcus aureus: An Evolving Pathogen. Clin Infect Dis 2014;58(Suppl 1):S10-9.

Salam MA, Al-Amin Y, Salam MT, Pawar JS, Akhter N, Rabaan AA, et al. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare 2023;11:1946.

Aljeldah MM. Antimicrobial Resistance and Its Spread Is a Global Threat. Antibiotics 2022;11:1082.

Chouhan S, Sharma K, Guleria S. Review antimicrobial activity of some essential oils-present status and future perspectives. Medicines (Basel) 2017;4:58.

Galgano M, Capozza P, Pellegrini F, Cordisco M, Sposato A, Sblano S, et al. Antimicrobial activity of essential oils evaluated in vitro against Escherichia coli and Staphylococcus aureus. Antibiotics (Basel) 2022;11:979.

El-Tarabily KA, El-Saadony MT, Alagawany M, Arif M, Batiha GE, Khafaga AF, et al. Using essential oils to overcome bacterial biofilm formation and their antimicrobial resistance. Saudi J Biol Sci 2021;28:5145–56.

Mihalache R, Dumitrescu R, Popa M, Vasile G, Vasile C. Evaluation of the antimicrobial activity of some essential oils against multi-drug resistant bacterial strains. Rom Biotechnol Lett 2019;24:292-300.

Jackson-Davis A, White S, Kassama LS, Coleman S, Shaw A, Mendonca A, et al. A review of regulatory standards and advances in essential oils as antimicrobials in foods. J Food Prot 2023;86:100025.

Clevenger JF. Apparatus for the determination of volatile oil. J Am Pharm Assoc 1928;17:345-9.

Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. 29th ed. CLSI supplement M100S. Wayne,PA;2019.

Clinical and Laboratory Standards Institute (CLSI). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard. 10th ed. CLSI document M07-A10. Wayne,PA;2015.

Chen Y, Li T, Bai J, Nong L, Ning Z, Hu Z, et al. Chemical composition and antibacterial activity of the essential oil of Citrus maxima (Burm.) Merr. Cv. Shatian Yu. J Biol Act Prod Nat 2018;8:228–33.

Hien TT, Quyen NTC, Truc TT, Quan PM. Evaluate the chemical composition of Kaffir lime (Citrus hystrix) essential oil using the classical method. IOP Conf Ser: Mater Sci Eng 2020;991:012028.

Dangol S, Poudel DK, Ojha PK, Maharjan S, Poudel A, Satyal R, et al. Essential oil composition analysis of Cymbopogon species from Eastern Nepal by GC-MS and chiral GC-MS, and antimicrobial activity of some major compounds. Molecules 2023;28:543.

Outemsaa B, Oubihi A, Jaber H, Haida S, Kenfaoui I, Ihamdan R, et al. Chemical composition, antioxidant and antimicrobial activities of the essential oil of Illicium verum. E3S Web Conf 2021;319:01004.

Selles SMA, Kouidri M, Belhamiti BT, Amrane AA. Chemical composition, in-vitro antibacterial and antioxidant activities of Syzygium aromaticum essential oil. J Food Meas Charact 2020;14:2352–8.

Elgayyar M, Draughon FA, Golden DA, Mount JR. Antimicrobial activity of essential oils from plants against selected pathogenic and saprophytic microorganisms. J Food Prot 2001;64:1019-24.

Ayoola GA, Lawore FM, Adelowotan T, Aibinu IE, Adenipekun E, Coker HAB, et al. Chemical analysis and antimicrobial activity of the essential oil of Syzigium aromaticum (clove). Afr J Microbiol Res 2008;2:162–6.

Alitonou AG, Tchobo FP, Avlessi F, Yehouenou B, Yedomonhan P, Koudoro AY, et al. Chemical and biological investigations of Syzygium aromaticum L. essential oil from Benin. Int J Biol Chem Sci 2012;6:1360-7.

Vasireddy L, Bingle LEH, Davies MS. Antimicrobial activity of essential oils against multidrug-resistant clinical isolates of the Burkholderia Cepacia complex. PLoS One 2018;13:e0201835.

Boukhatem MN, Ferhat MA, Kameli A, Saidi F, Kebir HT. Lemon grass (Cymbopogon citratus) essential oil as a potent anti-inflammatory and antifungal drugs. Libyan J Med 2014;9:25431.

Bassolé IHN, Lamien-Meda A, Bayala B, Obame LC, Ilboudo AJ, Franz C, et al. Chemical composition and antimicrobial activity of Cymbopogon citratus and Cymbopogon giganteus essential oils alone and in combination. Phytomedicine 2011;18:1070-4.

Trombetta D, Castelli F, Sarpietro MG, Venuti V, Cristani M, Daniele C, et al. Mechanisms of antibacterial action of three monoterpenes. Antimicrob Agents Ch 2005;49:2474–8.

Noumi E, Ahmad I, Adnan M, Patel H, , Merghni A, Haddaji N, et al. Illicium verum L. (Star Anise) Essential Oil: GC/MS Profile, Molecular Docking Study, In Silico ADME Profiling, Quorum Sensing, and Biofilm-Inhibiting Effect on Foodborne Bacteria. Molecules 2023;28:7691.

Naibaho NM, Safitri ASM, Rudito, Popang EP, Syauqi A, Saragih B, et al. Chemical composition and antibacterial activity of essential oil kaffir lime (Citrus hystrix DC) leaves from East Borneo. Food Res 2024;8:250-6.

Sreepian A, Sreepian PM, Chanthong C, Mingkhwancheep T, Prathit P. Antibacterial activity of essential oil extracted from Citrus hystrix (Kaffir Lime) peels: An in vitro study. Trop Biomed 2019;36:531-41.

Jeyakumar E, Lawrence R. Mechanisms of bactericidal action of eugenol against Escherichia coli. J Herb Med 2021;26:1-6.

Millezi FM, Pereira MO, Batista NN, Camargos N, Auad I, Cardoso MDG, et al. Susceptibility of monospecies and dual-species biofilms of Staphylococcus aureus and Escherichia coli to essential oils. J Food Safety 2012;32:351-9.

Saputra NA, Trisatya DR, Darmawan S, Wibisono HS, Pari G. Effect citronella oil against bacteria strains: Escherichia coli ATCC 10536, Staphylococcus aureus ATCC 6538 and Salmonella typhimurium ATCC 14028. IOP Conf Ser Earth Environ Sci 2020;460:012027.

Gu K, Ouyang P, Hong Y, Dai Y, Tang T, He C, et al. Geraniol inhibits biofilm formation of methicillin-resistant Staphylococcus aureus and increase the therapeutic effect of vancomycin in vivo. Front Microbiol 2022;13:960728.

Isao K, Fujita K, Nihei K. Antimicrobial activity of anethole and related compounds from aniseed. J Sci Food Agric 2008;88:242-7.

Yang JF, Yang CH, Chang HW, Yang CS, Wang SM, Hsieh MC, et al. Chemical composition and antibacterial activities of Illicium verum against antibiotic-resistant pathogens. J Med Food 2011;14:1192-200.

Tang C, Chen J, Zhang L, Zhang R, Zhang S, Ye S, et al. Exploring the antibacterial mechanism of essential oils by membrane permeability, apoptosis and biofilm formation combination with proteomics analysis against methicillin-resistant Staphylococcus aureus. Int J Med Microbiol 2020;31:151435.

Reichling J. Anti-biofilm and virulence factor-reducing activities of essential oils and oil components as a possible option for bacterial infection control. Planta Med 2020;86:520–37.

Marchese A, Orhan IE, Daglia M, Barbieri R, Di Lorenzo A, Izzo AD, et al. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint. Crit Rev Microbiol 2017;43:668-89.