Cholinesterase's Enzymes Inhibition and Michaelis-Menten Kinetics Studies on Ethnomedicinally Important Plant Chenopodium botrys


  • Naveed Iqbal Department of Pharmacy, Faculty of Biological Sciences, University of Malakand
  • Farhat Ullah Department of Pharmacy, Faculty of Biological Sciences, University of Malakand
  • Abdul Sadiq Department of Pharmacy, Faculty of Biological Sciences, University of Malakand
  • Muhammad Shahid Department of Pharmacy, Sarhad University of Science and Information Technology (SUIT)
  • Muhammad Ayaz Department of Pharmacy, Faculty of Biological Sciences, University of Malakand


Chenopodium botrys, MichaelisMenten kinetics, Alzheimer's disease, Acetylcholine, Acetylcholinesterase, Butyrylcholinesterase


Chenopodium botrys (C. botrys) methanolic extract (Cb.Cr) and subsequent fractions were screened for inhibitory potentials against cholinesterase's. Acetylcholinesterase (AChE) and butyryl-cholinesterase (BChE) in vitro inhibitory potentials were evaluated employing Ellman's assay. Lineweaver-Burk a plot (1/v versus 1/[s]) in which v is the velocity of reaction and [s] is substrate concentration was sketched by Michaelis-Menten kinetics. In AChE inhibition assay, chloroform (Cb.Chf), ethyl acetate (Cb.EtAc) and crude extract (Cb.Cr) showed highest activity with 80.12±1.97, 71.79±0.67 and 69.00±1.52% inhibitions at concentration of 1 mg/mL with IC50 values of 50, 115 and 130 μg/mL, respectively. Similarly, Cb.Chf, Cb.EtAc and Cb.Cr showed the strongest activity against BChE causing 76.20±0.28, 70.48±0.19 and 62.75±1.79% inhibitions at 1 mg/mL with IC50 of 25, 55 and 195 μg/mL, respectively. For the AChE inhibition, the Vmax and Km values were noted as 70.08 μg/min and 55.21 μg/mL intended for Cb-Cr, 54.38 μg/min and 107.6 μg/mL for Cb-Hex, 82.65 μg/min and 51.09 μg/mL for Cb-Chf, 72.83 μg/min and 63.05 μg/mL for Cb-EtAt, and 64.4 μg/min and 82.27 μg/mL for Cb-Aq. likewise, the Vmax and Km values for BChE also displayed effective inhibitory potential of Cb-Cr (63.51 μg/min and 51.82 μg/mL), Cb-Hex (53.13 μg/min and 47.71 μg/mL), Cb-Chf (77.37 μg/min and 33.13 μg/mL), Cb-EtAc (72.28 μg/min and 37.84 μg/ mL), and Cb-Aq (59.18 μg/min and 34.67 μg/mL), respectively. In conclusion, C. botrys contains bioactive components which can be effective in the curing of Alzheimer's disease (AD) and other stress associated diseases.


Download data is not yet available.


Ahmad, S., Ullah, F., Ayaz, M., Sadiq, A., & Imran, M. (2015). Antioxidant and anticholinesterase investigations of Rumex hastatus D. Don: Potential effectiveness in oxidative stress and neurological disorders. Biological research, 48(1), 20.

Ahmad, S., Ullah, F., Sadiq, A., Ayaz, M., Imran, M., Ali, I., ... & Shah, M.R. (2016). Chemical composition, antioxidant and anticholinesterase potentials of essential oil of Rumex hastatus D. Don collected from the North West of Pakistan. BMC Complementary and Alternative Medicine, 16(1), 1.

Ahmad, A., Ullah, F., Sadiq, A., Ayaz, M., Jan, M.S., Shahid, M., ... & Sahibzada, M.U.K. (2020a). Comparative cholinesterase, α-Glucosidase inhibitory, antioxidant, molecular docking, and kinetic studies on potent succinimide derivatives. Drug design, development and therapy, 14, 2165.

Ahmad, S., Zeb, A., Ayaz, M., & Murkovic, M. (2020b). Characterization of phenolic compounds using UPLC– HRMS and HPLC–DAD and anti-cholinesterase and anti-oxidant activities of Trifolium repens L. leaves. European Food Research and Technology, 246(3), 485-496.

Ali, M., Muhammad, S., Shah, M.R., Khan, A., Rashid, U., Farooq, U., ... & Ahmad, M. (2017). Neurologically potent molecules from Crataegus oxyacantha; isolation, anticholinesterase inhibition, and molecular docking. Frontiers in Pharmacology, 8, 327.

Ayaz, M., Ahmad, I., Sadiq, A., Ullah, F., Ovais, M., Khalil, A.T., & Devkota, H.P. (2020a). Persicaria hydropiper (L.) Delarbre: A review on traditional uses, bioactive chemical constituents and pharmacological and toxicological activities. Journal of ethnopharmacology, 251, 112516.

Ayaz, M., Junaid, M., Ahmed, J., Ullah, F., Sadiq, A., Ahmad, S., & Imran, M. (2014). Phenolic contents, antioxidant and anticholinesterase potentials of crude extract, subsequent fractions and crude saponins from Polygonum hydropiper L. BMC complementary and alternative medicine, 14(1), 145.

Ayaz, M., Junaid, M., Ullah, F., Sadiq, A., Ovais, M., Ahmad, W., & Zeb, A. (2016). Chemical profiling, antimicrobial and insecticidal evaluations of Polygonum hydropiper L. BMC complementary and alternative medicine, 16(1), 502.

Ayaz, M., Junaid, M., Ullah, F., Sadiq, A., Shahid, M., Ahmad, W., ... & Syed, N.I.H. (2017a). GC-MS analysis and gastroprotective evaluations of crude extracts, isolated saponins, and essential oil from Polygonum hydropiper L. Frontiers in Chemistry, 5, 58.

Ayaz, M., Junaid, M., Ullah, F., Subhan, F., Sadiq, A., Ali, G., ... & El-Shazly, M. (2017b). Anti-Alzheimer’s studies on β-sitosterol isolated from Polygonum hydropiper L. Frontiers in pharmacology, 8, 697.

Ayaz, M., Ovais, M., Ahmad, I., Sadiq, A., Khalil, A. T., & Ullah, F. (2020b). Biosynthesized metal nanoparticles as potential Alzheimer’s disease therapeutics. In Metal Nanoparticles for Drug Delivery and Diagnostic Applications (pp. 31-42). United Kingdom: Elsevier.

Ayaz, M., Sadiq, A., Junaid, M., Ullah, F., Ovais, M., Ullah, I., ... & Shahid, M. (2019a). Flavonoids as prospective neuroprotectants and their therapeutic propensity in aging associated neurological disorders. Frontiers in Aging Neuroscience, 11, 155.

Ayaz, M., Sadiq, A., Junaid, M., Ullah, F., Subhan, F., & Ahmed, J. (2017c). Neuroprotective and anti-aging potentials of essential oils from aromatic and medicinal plants. Frontiers in aging neuroscience, 9, 168.

Ayaz, M., Ullah, F., Sadiq, A., Kim, M.O., & Ali, T. (2019). Natural products-based drugs: Potential therapeutics against Alzheimer's disease and other neurological disorders. Frontiers in pharmacology, 10, 1417.

Baum, L., & Ng, A. (2004). Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer's disease animal models. Journal of Alzheimer's disease, 6(4), 367-377.

Berkov, S., Georgieva, L., Kondakova, V., Atanassov, A., Viladomat, F., Bastida, J., & Codina, C. (2009). Plant sources of galanthamine: phytochemical and biotechnological aspects. Biotechnology & Biotechnological Equipment, 23(2), 1170-1176.

Buchbauer, G., Jirovetz, L., Wasicky, M., Walter, J., & Nikiforov, A. (1995). Headspace volatiles of Chenopodium botrys (Chenopodiaceae). Journal of Essential Oil Research, 7(3), 305-308.

de Pascual-T,J., Gonzalez, M., Vicente, S., & Bellido, I. (1981). Flavonoids from Chenopodium botrys. Planta medica, 41(4), 389-391.

llman, G.L., Courtney, K.D., & Featherstone, R.M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical pharmacology, 7(2), 88-95.

Frautschy, S., Hu, W., Kim, P., Miller, S., Chu, T., Harris-White, M., & Cole, G. (2001). Phenolic anti-inflammatory antioxidant reversal of Aβ-induced cognitive deficits and neuropathology. Neurobiology of aging, 22(6), 993-1005.

Henry, W., Querfurth, H.W., & LaFerla, F.M. (2010). Mechanisms of disease Alzheimer’s disease. New Engl J. Med., 362, 329-344

Imran, M., Ullah, F., Ayaz, M., Sadiq, A., Shah, M.R., Jan, M.S., & Ullah, F. (2017). Anticholinesterase and antioxidant potentials of Nonea micrantha Bioss. & Reut along with GC-MS analysis. BMC complementary and alternative medicine, 17(1), 499.

Kamal, Z., Ullah, F., Ayaz, M., Sadiq, A., Ahmad, S., Zeb, A., ... & Imran, M. (2015). Anticholinesterse and antioxidant investigations of crude extracts, subsequent fractions, saponins and flavonoids of Atriplex laciniata L.: Potential effectiveness in Alzheimer’s and other neurological disorders. Biological research, 48(1), 21.

Khalil, A.T., Ayaz, M., Ovais, M., Wadood, A., Ali, M., Shinwari, Z.K., & Maaza, M. (2018). In vitro cholinesterase enzymes inhibitory potential and in silico molecular docking studies of biogenic metal oxides nanoparticles. Inorganic and Nano-Metal Chemistry, 48(9), 441-448.

Kim, M., Kim, S., & Yang, W. (2014). Mechanisms of action of phytochemicals from medicinal herbs in the treatment of Alzheimerʼs disease. Planta Med, 80, 1249–1258.

Lim, G.P., Chu, T., Yang, F., Beech, W., Frautschy, S.A., & Cole, G.M. (2001). The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. Journal of Neuroscience, 21(21), 8370-8377.

Maksimovic, Z.A., Dordevic, S., & Mraovic, M. (2005). Antimicrobial activity of Chenopodium botrys essential oil. Fitoterapia, 76(1), 112-114.

Mantle, D., Pickering, A.T., & Perry, E.K. (2000). Medicinal plant extracts for the treatment of dementia. CNS drugs, 13, 201-213

Mir, N.T., Saleem, U., Anwar, F., Ahmad, B., Ullah, I., Hira, S., ... & Ayaz, M. (2019). Lawsonia inermis markedly improves cognitive functions in animal models and modulate oxidative stress markers in the brain. Medicina, 55(5), 192.

Morteza-Semnani, K. (2015). A Review on Chenopodium botrys L.: Traditional uses, chemical composition and biological activities. Pharmaceutical and Biomedical Research, 1(2), 1-9.

Nair, J.J., & van Staden, J. (2012). Acetylcholinesterase inhibition within the lycorine series of Amaryllidaceae alkaloids. Natural product communications, 7(7), 1934578X1200700741.

Ono, K., Hasegawa, K., Naiki, H., & Yamada, M. (2004). Curcumin has potent anti-amyloidogenic effects for Alzheimer's β-amyloid fibrils in vitro. Journal of Neuroscience Research, 75(6), 742-750.

Ovais, M., Ayaz, M., Khalil, A.T., Shah, S.A., Jan, M. S., Raza, A., ... & Shinwari, Z.K. (2018a). HPLC-DAD finger printing, antioxidant, cholinesterase, and α-glucosidase inhibitory potentials of a novel plant Olax nana. BMC Complementary and Alternative Medicine, 18(1), 1.

Ovais, M., Zia, N., Ahmad, I., Khalil, A. T., Raza, A., Ayaz, M., ... & Shinwari, Z.K. (2018b). Phyto-therapeutic and nanomedicinal approaches to cure Alzheimer’s disease: Present status and future opportunities. Frontiers in aging neuroscience, 10, 284.

Ozer, M.S., Sarikurkcu, C., Ceylan, O., Akdeniz, I., & Tepe, B. (2017). A comprehensive study on chemical composition, antioxidant and enzyme inhibition activities of the essential oils of Chenopodium botrys collected from three different parts of Turkey. Industrial Crops and Products, 107, 326-331.

Rice-Evans, C.A., Miller, N.J., & Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine, 20(7), 933-956.

Russo, P., Frustaci, A., Del Bufalo, A., Fini, M., & Cesario, A. (2013). Multitarget drugs of plants origin acting on Alzheimer's disease. Current medicinal chemistry, 20(13), 1686-1693.

Sadiq, A., Mahmood, F., Ullah, F., Ayaz, M., Ahmad, S., Haq, F.U., ... & Jan, M.S. (2015). Synthesis, anticholinesterase and antioxidant potentials of ketoesters derivatives of succinimides: a possible role in the management of Alzheimer’s. Chemistry Central Journal, 9(1), 31.

Shah, S.M.M., Sadiq, A., Shah, S.M.H., & Khan, S. (2014). Extraction of saponins and toxicological profile of Teucrium stocksianum Bioss extracts collected from district Swat, Pakistan. Biological Research, 47,(1), 1-5.

Shah, S. M., Ayaz, M., Khan, A.U., Ullah, F., Farhan, Shah, A.U.H.A., ... & Hussain, S. (2015). 1, 1-Diphenyl, 2-picrylhydrazyl free radical scavenging, bactericidal, fungicidal and leishmanicidal properties of Teucrium stocksianum. Toxicology and Industrial Health, 31(11), 1037-1043.

Ullah, F., Ayaz, M., Sadiq, A., Hussain, A., Ahmad, S., Imran, M., & Zeb, A. (2016). Phenolic, flavonoid contents, anticholinesterase and antioxidant evaluation of Iris germanica Var; florentina. Natural Product Research, 30(12), 1440-1444.

Ullah, F., Iqbal, N., Ayaz, M., Sadiq, A., Ullah, I., Ahmad, S., & Imran, M. (2017). DPPH, ABTS free radical scavenging, antibacterial and phytochemical evaluation of crude methanolic extract and subsequent fractions of Chenopodium botrys aerial parts. Pakistan Journal of Pharmaceutical Sciences, 30(3), 761-766.

Yang, F., Lim, G.P., Begum, A.N., Ubeda, O.J., Simmons, M.R., Ambegaokar, S.S., ... & Cole, G.M. (2005). Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. Journal of Biological Chemistry, 280(7), 5892-5901.

Yoo, K.Y., & Park, S.Y. (2012). Terpenoids as potential anti-Alzheimer’s disease therapeutics. Molecules, 17(3), 3524-3538.

Zeb, A., Sadiq, A., Ullah, F., Ahmad, S., & Ayaz, M. (2014). Investigations of anticholinestrase and antioxidant potentials of methanolic extract, subsequent fractions, crude saponins and flavonoids isolated from Isodon rugosus. Biological research, 47(1), 1-10.




How to Cite

Iqbal, N., Ullah, F., Sadiq, A., Shahid, . M., & Ayaz, M. (2023). Cholinesterase’s Enzymes Inhibition and Michaelis-Menten Kinetics Studies on Ethnomedicinally Important Plant Chenopodium botrys. Journal of Food Health and Bioenvironmental Science, 13(3), 40–46. Retrieved from



Original Articles