New [5]helicene derivatives with large Stokes shifts for Hg2+ determination and their application in drinking water, river water and tuna fillet
Main Article Content
Abstract
Two novel [5]helicene-based fluorescence sensors, H1 (2,2'-((propane-1,3-diylbis(sulfanediyl))bis(ethane-2,1-diyl))bis(7,12-dimethoxy-4,5,14,15-tetrahydro-1H-dinaphtho[2,1-e:1',2'-g]isoindole-1,3(2H)-dione) and H1A (2,2'-((propane-1,3-diylbis(sulfanediyl))bis(ethane-2,1-diyl))bis(7,12-dimethoxy-1H-dinaphtho[2,1-e:1',2'g]isoindole-1, 3(2H)-dione) were successfully prepared and characterized for their application in the determination of Hg2+ ions. The syntheses of H1 and H1A involved simple reactions including alkylation and imide formation. The spectroscopic results of H1 and H1A showed strong fluorescence in the visible region and large Stokes shifts (150-200 nm). Sensors provided Hg2+-selective fluorescence quenching by discriminating interfering ions including Cd2+, Co2+, Zn2+ Pb2+, Ag+ and Cu2+. The binding mode of the sensors was also explored using molecular modeling, In addition, H1 showed the potential to determine Hg2+ in real samples such as drinking water, river water and tuna fillet.
Downloads
Article Details
References
Bjerrum, J. (1950). On the tendency of the metal ions toward complex formation. Chemical Reviews, 46(2), 381-401.
Buckland, D., Bhosale, S. V., and Langford, S. J. (2011). A chemodosimer based on a core-substituted naphthalene diimide for fluoride ion detection. Tetrahedron Letter, 52(16), 1990-1992.
Cheng, X., Li, S., Zhong, A., Qin, J., and Li, Z. (2011). New fluorescent probes for mercury(II) with simple structure. Sensors and Actuators B: Chemical, 157(1), 57-63.
Dalapati, S., Paul, B. K., Jana, S., and Guchhait, N. (2011). Highly selective and sensitive fluorescence reporter for toxic Hg(II) ion by a synthetic symmetrical azine derivative. Sensors and Actuators B, 157(2), 615-620.
Erdemir, S., Malkondu, S., Kocyigit, O., and Alici, O. (2013). A novel colorimetric and fluorescent sensor based on calix[4]arene possessing triphenylamine units. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 114, 190-196.
Frisch, M. J. et al. (2016). GAUSSIAN 09 (Revision E.01), Gaussian, Inc., Wallingford.
Goswami, S., Manna, A., Paul, S., Das, A. K., Nandi, P. K., Maity, A. K., and Saha, P. (2014). A turn on ESIPT probe for rapid and ratiometric fluorogenic detection of homocysteine and cysteine in water with live cell-imaging. Tetrahedron Letters, 55(2), 490-494.
Gu, B., Huang, L., Mi, N., Yin, P., Zhang, Y., Tu, X., Luo, X., Luo, S., and Yao, S. (2015). An ESIPT-based fluorescent probe for highly selective and ratiometric detection of mercury(II) in solution and in cells. Analyst, 140(8), 2778-2784.
Gutknecht, J. (1981). Inorganic mercury (Hg2+) transport through lipid bilayer membranes. The Journal of Membrane Biology, 61(1), 61-66.
Harada, M. (1995). Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Critical Reviews in Toxicology, 25(1), 1-24.
Hardy, S., and Jones, P. (1997). Capillary electrophoresis determination of methylmercury in fish and crab meat after extraction as the dithizone sulphonate complex. Journal of Chromatography A, 791(1-2), 333-338.
Harris, H. H., Pickering, I. J., and George, G. N. (2003). The chemical form of mercury in fish. Science, 301(5637), 1203.
Humphrey, W., Dalke, A., and Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33-38.
Kim, S. H., Kim, J. S., Park, S. M., and Chang, S. K. (2006). Hg2+-selective OFF-ON and Cu2+-selective ON-OFF type fluoroionophore based upon cyclam. Organic Letters, 8(3), 371-374.
Kim, S. H., Song, K. C., Ahn, S., Kang, Y. S., and Chang, S. K. (2006). Hg2+-selective fluoroionophoric behavior of pyrene appended diazatetrathia-crown ether. Tetrahedron Letter, 47(4), 497-500.
Kraithong, S., Damrongsak, P., Suwatpipat, K., Sirirak, J., Swanglap, P., and Wanichacheva, N. (2016). Highly Hg2+-sensitive and selective fluorescent sensors in aqueous solution and sensors-encapsulated polymeric membrane. RSC Advances, 6(13), 10401-10411.
Lee, Y. H., Lee, M. H., Zhang, J. F., and Kim, J. S. (2010). Pyrene excimer-based calix[4]arene FRET chemosensor for mercury (II). Journal of Organic Chemistry, 75(21), 7159-7165.
Li, M., Lu, H. Y., Liu, R. L., Chen, J. D., and Chen, C. F. (2012). Turn-on fluorescent sensor for selective detection of Zn2+, Cd2+, and Hg2+ in water. The Journal of Organic Chemistry, 77(7), 3670-3673.
Miao, F., Zhan, J., Zou, Z., Tian, D., and Li, H. (2012). A new Hg2+ fluorescent sensors based on 1,3-alternate thiacalix[4]arene (L) and the complex of [L+Hg2+] as turn-on sensor for cysteine. Tetrahedron, 68(10), 2409-2413.
Moon, S. Y., Cha, N. R., Kim, Y. H., and Chang, S. K. (2004). New Hg2+-selective chemo and fluoroionphore based upon 8-hydroxyquinoline. Journal of Organic Chemistry, 69(1), 181-183.
Ooyama, Y., Matsugasako, A., Nagano, T., Oka, K., Kushimoto, K., Komaguchi, K., Imae, I., and Harima, Y. (2011). Fluorescence PET (photo-induced electron transfer) sensor for water based on anthracene-amino acid. Journal of Photochemistry and Photobiology A: Chemistry, 222(1), 52-55.
Park, S. M., Kim, M. H., Choe, J. I. No, K. T., and Chang, S. K. (2007). Cyclams bearing diametrically disubstitutedpyrenes as Cu2+- and Hg2+-selective fluoroionophores. Journal of Organic Chemistry, 72(9), 3550-3553.
Renzoni, A., Zino, F., and Franchi, E. (1998). Mercury levels along the food chain and risk for exposed populations. Environmental Research, 77(2), 68-72.
Sahasithiwat, S., Mophuang, T., Menbangpung, L., Kamtonwong, S., and Sooksimuang, T. (2010). 3,12-Dimethoxy-7,8-dicyano-[5]helicene as a novel emissive material for organic light-emitting diode. Synthetic Metals, 160(11-12), 1148-1152.
Shellaiah, M., Rajan, Y. C., Balu, P., and Murugan, A. (2015). A pyrene based Schiff base probe for selective fluorescence turn-on detection of Hg2+ ions with live cell application. New Journal of Chemistry, 39(4), 2523-2531.
Song, K. C., Kim, M. H., Kim, H. J., and Chan, S. K. (1996). Hg2+- and Cu2+-selective fluoroionophoric behaviors of a dioxocyclam derivative bearing anthrylacetamide moieties. Tetrahedron Letter, 48(42), 7464-7468.
Sooksimuang, T., and Mandal, B. K. (2003). [5]helicene-fused phthalocyanine derivatives. New members of the phthalocyanine family. The Journal of Organic Chemistry, 68(2), 652-655.
Sooksimuang, T., Kamtonwong, S., Parnchan, W., Kangkaew, L., and Sahasithiwat, S. (2014). Crystal structure of 3,13-dimethoxy-5,6,10,11-tetrahydrofuro[3,4-i][5]helicene-7,9-dione. Acta Crystallographica Section E: Crystallographic Communications, 70(Pt 11), 418-420.
Shortreed, M., Kopelman, R., Kuhn, M., and Hoyland, B. (1996). Fluorescent fiber-optic calcium sensor for physiological measurements. Analytical Chemistry, 68(8), 1414-1418.
Suresh, M., Mandal, A. K., Saha, S., Suresh, E., Mandoli, A., Liddo, R. D., Parnigotto, P. P., and Das, A. (2010). Azine-based receptor for recognition of Hg2+ ion: crystallographic evidence and imaging application in live cells. Organic Letters, 12(23), 5406-5409.
Tchounwou, P. B., Ayensu, W. K., Ninashvili, N., and Sutton, D. (2003). Environmental exposure to mercury and its toxicopathologic implications for public health. Environmental Toxicology, 18(3), 149-175.
Thivierge, C., Han, J., Jenkins, R. M., and Burgess, K. (2011). Fluorescent proton sensors based on energy transfer. Journal of Organic Chemistry, 76(13), 5219-5228.
Tian, M. H., Ai, Z. J., Ming, D., Yu, D. M., Yu, P., and Ya, W. W. (2010). A simply and highly selective “turn-on” type fluorescent chemosensor for Hg2+ based on chiral BINOL-Schiff’s base ligand. Journal of Luminescence, 130(5), 888-892.
Wanichacheva, N., Siriprumpoonthum, M., Kamkaew, A., and Grudpan, K. (2009). Dual optical detection of a novel selective mercury sensor based on 7-nitrobenzo-2-oxa-1,3-diazolyl subunits. Tetrahedron Letters, 50(16), 1783-1786.
Wanichacheva, N., Prapawattanapol, N., Lee, V. S., Grudpan, K., and Petsom, A. (2013). Hg2+-induced self-assembly of a naphthalimide derivative by selective ‘‘turn-on’’ monomer/ excimer emissions. Journal of Luminescence, 134(6), 686-690.