Yeast Cell Surface Display of Bacterial Chitinase as a New Approach for Biocontrol of Phytopathogenic Fungi

Main Article Content

Siripan Limsirichaikul
Piracha Silpsrikul
Pachumporn Chanweerachai
Parichat Promsoongnearn
Kittipong Puengpan
Atsuko Niimi
Tomoo Ogi
Mitsuyoshi Ueda
Chanpen Wiwat

Abstract

Bacterial chitinase (EC 3.2.1.14) is a potential biological pesticide, but its biochemical properties for agricultural usage need to be improved.  We adopted a new approach for using chitinase as a biocontrol application by immobilization chitinase on a yeast cell surface.  To reveal the enzyme on the surface of Saccharomyces cerevisiae, a bacterial chitinase gene of Bacillus circulans No.4.1, was fused with the 3’ half of a-agglutinin and the glycosylphosphatidylinositol (GPI) anchored signal. The yeast surface display of chitinase hydrolyzed p-nitrophenyl-diacetyl-chitobiose up to 3- to 4-fold higher than yeast without chitinase on the cell surface and was still active for up to 20 hours.  Our results demonstrated that chitinase was successfully expressed on the yeast surface in an active form.  Furthermore, the chitinase displayed on the yeast surface showed an antifungal activity against phytopathogenic fungi, especially Fusarium oxysporum.  This new approach may prove to be a potential biocontrol against phytopathogenic fungi.

Downloads

Download data is not yet available.

Article Details

How to Cite
Limsirichaikul, S., Silpsrikul, P., Chanweerachai, P., Promsoongnearn, P., Puengpan, K., Niimi, A., Ogi, T., Ueda, M., & Wiwat, C. (2015). Yeast Cell Surface Display of Bacterial Chitinase as a New Approach for Biocontrol of Phytopathogenic Fungi. Science, Engineering and Health Studies, 9(1), 40–50. https://doi.org/10.14456/sustj.2015.1
Section
Research Articles

References

Alabouvette, C., Olivain, C., Migheli, Q., and Steinberg, C. (2009). Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wilt-inducing Fusarium oxysporum. The New Phytologist, 184(3): 529-544. doi: 10.1111/j.1469-8137.2009.03014.x.

Brunner, K., Zeilinger, S., Ciliento, R., Woo, S. L., Lorito, M., Kubicek, C. P., and Mach, R. L. (2005). Improvement of the fungal biocontrol agent Trichoderma atroviride to enhance both antagonism and induction of plant systemi disease resistance. Applied and Environmental Microbiology, 71(7): 3959-3965.

Chastagner G. A. and Riley, (1990). Occurrence and control of benzimidazole and dicaboximide resistant Botrysis spp. on bulb crops in Western Washington and Oregon. Acta Horticulturae, 266: 437-445.

Chen, C. Y., Wang, Y. H., and Huang, C. J. (2004). Enhancement of the antifungal activity of Bacillus subtilis F29-3 by the chitinase encoded by Bacillus circulans chiA gene. Canadian Journal of Microbiology, 50(6): 451-454.

Chernin, L. S., De la Fuente, L., Sobolev, V., Haran, S., Vorgias, C. E., Oppenheim, A. B., and Chet, I. (1997). Molecular cloning, structural analysis, and expression in Escherichia coli of a chitinase gene from Enterobacter agglomerans. Applied and Environmental Microbiology, 63(3): 834-839.

Felse, P. A. and Panda, T. (1999). Regulation and cloning of microbial chitinase genes. Applied Microbiology and Biotechnology, 51(2): 141-151.

Flach, J., Pilet, P. E., and Jollès, P. (1992.) What’s new in chitinase research? Experientia, 48(8): 701-716.

Freeman S., Minz, D., Kolesnik I., Barbul, O., Zveibil, A., Maymon, M., Nitzani, Y., Kirshner, B., Rav-David, D., Bilu, A., Dag, A., Shafir, S., and Elad, Y. (2004). Trichoderma biocontrol of Colletotrichum acutatum and Botrytis cinerea and survival in strawberry. European Journal of Plant Pathology, 110: 361-370.

Kabir, K. E., Sugimoto, H., Tado, H., Endo, K., Yamanaka, A., Tanaka, S., and Koga, D. (2006). Effect of Bombyx mori chitinase against Japanese pine sawyer (Monochamus alternatus) adults as a biopesticide. Bioscience, Biotechnology, and Biochemistry, 70(1): 219-229.

Kato, M., Kuzuhara, Y., Maeda, H., Shiraga, S., and Ueda, M. (2006). Analysis of a processing system for proteases using yeast cell surface engineering: conversion of precursor of proteinase A to active proteinase A. Applied Microbiology and Biotechnology, 72(6): 1229-1237.

Kobayashi, D. Y., Reedy, R. M., Bick, J., and Oudemans, P. V. (2002). Characterization of a chitinase gene from Stenotrophomonas maltophilia strain 34S1 and its involvement in biological control. Applied and Environmental Microbiology, 68(3): 1047-1054.

Kowsari, M., Motallebi, M., and Zamani, M. (2014). Protein engineering of Chit42 towards improvement of chitinase and antifungal activities. Current Microbiology, 68: 495-502.

Kramer, K. J. and Muthukrishnan, S. (1997). Insect chitinases: molecular biology and potential use as biopesticides. Insect Biochemistry and Molecular Biology, 27(11): 887-900.

Kuroda, K., Matsui, K., Higuchi, S., Kotaka, A., Sahara, H., Hata, Y., and Ueda, M. (2009). Enhancement of display efficiency in yeast display system by vector engineering and gene disruption. Applied Microbiology and Biotechnology, 82(4): 713-719.

Lertcanawanichakul, M., Wiwat, C., Bhumiratana, A., and Dean, D. H. (2004). Expression of chitinase-encoding genes in Bacillus thuringiensis and toxicity of engineered B. thuringiensis subsp. aizawai toward Lymantria dispar larvae. Current Microbiology, 48(3): 175-181.

Matsumoto, T., Fukuda, H., Ueda, M., Tanaka, A., and Kondo, A. (2002). Construction of yeast strains with high cell surface lipase activity by using novel display systems based on the Flo1p flocculation functional domain. Applied and Environmental Microbiology, 68(9): 4517-4522.

Michielse, C. B. and Rep, M. (2009). Pathogen profile update: Fusarium oxysporum. Molecular Plant Pathology, 10(3): 311-324.

Murai, T., Ueda, M., Yamamura, M., Atomi, H., Shibasaki, Y., Kamasawa, N., Osumi, M., Amachi, T., and Tanaka, A. (1997). Construction of a starch-utilizing yeast by cell surface engineering. Applied and Environmental Microbiology, 63(4): 1362-1366.

O’Brien, M. and Colwell, R. R. (1987). A rapid test for chitinase activity that uses 4-ethylumbelliferyl-N-acetyl-beta-D-glucosaminide. Applied and Environmental Microbiology, 53(7): 1718-1720.

Okochi, N., Kato-Murai, M., Kadonosono, T., and Ueda, M. (2007). Design of a serine protease-like catalytic triad on an antibody light chain displayed on the yeast cell surface. Applied Microbiology and Biotechnology, 77(3): 597-603.

Sato, N., Matsumoto, T., Ueda, M., Tanaka, A., Fukuda, H., and Kondo, A. (2002). Long anchor using Flo1 protein enhances reactivity of cell surface-displayed glucoamylase to polymer substrates. Applied Microbiology and Biotechnology, 60(4): 469-474.

Shibasaki, S., Ueda, M., Ye, K., Shimizu, K., Kamasawa, N., Osumi, M., and Tanaka, A. (2001). Creation of cell surface-engineered yeast that display different fluorescent proteins in response to the glucose concentration. Applied Microbiology and Biotechnology, 57(4): 528-533.

Shusta, E. V., Kieke, M. C., Parke, E., Kranz, D. M., and Wittrup, K. D. (1999) Yeast polypeptide fusion surface display levels predict thermal stability and soluble secretion efficiency. Journal of Molecular Biology, 292(5): 949-956.

Siwayaprahm P., Audtho, M., Ohmiya, K., and Wiwat, C. (2006). Purification and characterization of Bacillus circulans No.4.1 chitinase expressed in Escherichia coli. World Journal of Microbiology and Biotechnology, 22: 331-335.

Tajima, M., Nogi, Y., and Fukasawa, T. (1985). Primary structure of the Saccharomyces cerevisiae GAL7 gene. Yeast, 1(1): 67-77.

Tanaka, T., Yamada, R., Ogino, C., and Kondo, A. (2012). Recent developments in yeast cell surface display toward extended applications in biotechnology. Applied Microbiology and Biotechnology, 95(3): 577-591.

Thompson, S. E., Smith, M., Wilkinson, M. C., and Peek, K. (2001). Identification and characterization of a chitinase antigen from Pseudomonas aeruginosa strain 385. Applied and Environmental Microbiology, 67(9): 4001-4008.

Ueda, M. and Tanaka, A. (2000a). Cell surface engineering of yeast: construction of arming yeast with biocatalyst. Journal of Bioscience and Bioengineering, 90(2): 125-136.

Ueda, M. and Tanaka, A. (2000b). Genetic immobilization of proteins on the yeast cell surface. Biotechnology Advances, 18(2): 121-140.

Ueda, M. and Tanaka, A. (2001). Cell surface display: a novel expression system of proteins. Tanpakushitsu Kakusan Koso, 46 (11 Suppl): 1480-1487.

Watanabe, T., Ito, Y., Yamada, T., Hashimoto, M., Sekine, S., and Tanaka, H. (1994). The roles of the C-terminal domain and type III domains of chitinase A1 from Bacillus circulans WL-12 in chitin degradation. Journal of Bacteriology, 176(15): 4465-4472.

Wiwat, C., Lertcanawanichakul, M., Siwayapram, P., Pantuwatana, S., and Bhumiratana, A. (1996). Expression of chitinase-encoding genes from Aeromonas hydrophila and Pseudomonas maltophilia in Bacillus thuringiensis subsp. israelensis. Gene, 179(1): 119-126.

Wiwat, C., Siwayaprahm, P., and Bhumiratana, A. (1999). Purification and characterization of chitinase from Bacillus circulans No.4.1. Current Microbiology, 39(3): 134-140.

Wiwat, C., Thaithanun, S., Pantuwatana, S., and Bhumiratana, A. (2000). Toxicity of chitinase-producing Bacillus thuringiensis ssp. kurstaki HD-1 (G) toward Plutella xylostella. Journal of Invertebrate Pathology, 76(4): 270-277.

Yue, L., Chi, Z., Wang, L., Liu, J., Madzak, C., Li, J., and Wang, X. (2008). Construction of a new plasmid for surface display on cells of Yarrowia lipolytica. Journal of Microbiological Methods, 72(2): 116-123.

Zou, W., Ueda, M., and Tanaka, A. (2002). Screening of a molecule endowing Saccharomyces cerevisiae with n-nonane-tolerance from a combinatorial random protein library. Applied Microbiology and Biotechnology, 58(6): 806-812.