Biomechanical study of midpalatine suture and miniscrews affected by maturation of midpalatine suture, monocortical and bicortical miniscrew placement in bone-borne rapid palatal expander: a finite element study

Main Article Content

Chayapa Sermboonsang
Nattapon Chantarapanich
Samroeng Inglam
Kanlaya Insee

Abstract

This study aimed to investigate the biomechanical performance of different miniscrews placement techniques in different stages of midpalatine suture maturation using finite element analysis. Four models of partial nasomaxillary structure with bone-borne rapid palatal expander were constructed with monocortical and bicortical placement types with partly ossified midpalatine suture and completed ossified midpalatine suture. From the finding, both monocortical and bicortical techniques is able to separate partly ossified suture. The separation of completed ossified midpalatine was even more difficult than partly ossified suture because the separation was not clearly observed and higher stress exhibited on expander. However, the bicortical placement technique was observed to be more parallel pattern of suture expansion. In all Finite Element (FE) cases, von Mises stress exhibited on neck and upper intraosseous part of miniscrew in monocortical model. In midpalatine suture, the bicortical model can produce high stress in superior and inferior region of midpalatine suture, whereas monocortical can diffuse only inferior of suture. The completed ossified midpalatine suture shows low stress level along the suture and has insignificant displacement. The elastic strain pattern at peri-implant site in monocortical model was high at medial tip and lateral at cortical margin. For bicortical model, the elastic strain concentrated at upper intraosseous. The bicortical placement technique has more advantages in promote parallel maxillary bone expansion, decrease deformation risk and increase stability of appliance.

Downloads

Download data is not yet available.

Article Details

Section
Research Articles

References

Albogha, M. H., Kitahara, T., Todo, M., Hyakutake, H., and Takahashi, I. (2016). Maximum principal strain as a criterion for prediction of orthodontic mini-implants failure in subject-specific finite element models. Angle Orthodontist, 86(1), 24-31.

Alhammadi, M. S., Halboub, E., Fayed, M. S., Labib, A., and El-Saaidi, C. (2018). Global distribution of malocclusion traits: A systematic review. Dental Press Journal of Orthodontics, 23(6), e1-e10.

Angelieri, F., Cevidanes, L. H. S., Franchi, L., Gonçalves, J. R., Benavides, E., and McNamara Jr., J. A. (2013). Midpalatal suture maturation: classification method for individual assessment before rapid maxillary expansion. American Journal of Orthodontics and Dentofacial Orthopedics, 144(5), 759-769.

Baccetti, T., Franchi, L., Cameron, C. G., and McNamara Jr., J. A. (2001). Treatment timing for rapid maxillary expansion. Angle Orthodontist, 71(5), 343-350.

Baysal, A., Uysal, T., Veli, I., Ozer, T., Karadede, I., and Hekimoglu, S. (2013). Evaluation of alveolar bone loss following rapid maxillary expansion using cone-beam computed tomography. Korean Journal of Orthodontics, 43(2), 83-95.

Boryor, A., Hohmann, A., Wunderlich, A., Geiger, M., Kilic, F., Kim, K. B., Sander, M., Böckers, T., and Sander, C. (2013). Use of a modified expander during rapid maxillary expansion in adults: an in vitro and finite element study. International Journal of Oral and Maxillofacial Implants, 28(1), e11-e16.

Carvalho Trojan, L., Andrés González-Torres, L., Claudia Moreira Melo, A., and Barbosa de Las Casas, E. (2017). Stresses and strains analysis using different palatal expander appliances in upper jaw and midpalatal Suture. Artificial Organs, 41(6), E41-E51.

Choi, T. H., Kim, B. I., Chung, C. J., Kim, H. J., Baik, H. S., Park, Y. C., and Lee, K. J. (2015). Assessment of masticatory function in patients with non-sagittal occlusal discrepancies. Journal of Oral Rehabilitation, 42(1), 2-9.

Corega, C., Corega, M., Bǎciuţ, M., Vaida, L., Wangerin, K., Bran, S., and Bǎciuţ, G. (2010). Bimaxillary distraction osteogenesis--an effective approach for the transverse jaw discrepancies in adults. Chirurgia (Romania), 105(4), 571-575.

Erverdi, N., Okar, I., Kücükkeles, N., and Arbak, S. (1994). A comparison of two different rapid palatal expansion techniques from the point of root resorption. American Journal of Orthodontics and Dentofacial Orthopedics, 106(1), 47-51.

Farnsworth, D., Rossouw, P. E., Ceen, R. F., and Buschang, P. H. (2011). Cortical bone thickness at common miniscrew implant placement sites. American Journal of Orthodontics and Dentofacial Orthopedics, 139(4), 495-503.

Frost, H. M. (1994). Wolff's law and bone's structural adaptations to mechanical usage: an overview for clinicians. Angle Orthodontist, 64(3), 175-188.

Jafari, A., Shetty, K. S., and Kumar, M. (2003). Study of stress distribution and displacement of various craniofacial structures following application of transverse orthopedic forces--a three-dimensional FEM study. Angle Orthodontist, 73(1), 12-20.

Kim, K. B., and Helmkamp, M. E. (2012). Miniscrew implant-supported rapid maxillary expansion, Journal of Clinical Orthodontics, 46(10), 608-612.

Lee, R. J., Moon, W., and Hong, C. (2017). Effects of monocortical and bicortical mini-implant anchorage on bone-borne palatal expansion using finite element analysis. American Journal of Orthodontics and Dentofacial Orthopedics, 151(5), 887-897.

Lee, H. K., Bayome, M., Ahn, C. S., Kim, S. H., Kim, K. B., Mo, S. S., and Kook, Y. A. (2014). Stress distribution and displacement by different bone-borne palatal expanders with micro-implants: a three-dimensional finite-element analysis. European Journal of Orthodontics, 36(5), 531-540.

Lee, H., Ting, K., Nelson, M., Sun, N., and Sung, S. J. (2009). Maxillary expansion in customized finite element method models. American Journal of Orthodontics and Dentofacial Orthopedics, 136(3), 367-374.

Ludwig, B., Baumgaertel, S., Zorkun, B., Bonitz, L., Glasl, B., Wilmes, B., and Lisson, J. (2013). Application of a new viscoelastic finite element method model and analysis of miniscrew-supported hybrid hyrax treatment. American Journal of Orthodontics and Dentofacial Orthopedics, 143(3), 426-435.

MacGinnis, M., Chu, H., Youssef, G., Wu, K. W., Machado, A. W., and Moon, W. (2014). The effects of micro-implant assisted rapid palatal expansion (MARPE) on the nasomaxillary complex-a finite element method (FEM) analysis. Progress in Orthodontics, 15(1), 52.

Michael, J. A., Townsend, G. C., Greenwood, L. F., and Kaidonis, J. A. (2009). Abfraction: separating fact from fiction. Australian Dental Journal, 54(1), 2-8.

Mosleh, M. I., Kaddah, M. A., Abd Elsayed, F. A., and Elsayed, H. S. (2015). Comparison of transverse changes during maxillary expansion with 4-point bone-borne and tooth-borne maxillary expanders. American Journal of Orthodontics and Dentofacial Orthopedics, 148(4), 599-607.

Nojima, L. I., Nojima, M. D. C. G., da Cunha, A. C., Guss, N. O., and Sant’anna, E. F. (2018) Mini-implant selection protocol applied to MARPE. Dental Press Journal of Orthodontics, 23(5), 93-101.

Northway, W. M., and Meade Jr., J. B. (1997). Surgically assisted rapid maxillary expansion: a comparison of technique, response, and stability. Angle Orthodontist, 67(4), 309-320.

Perillo, L., Jamilian, A., Shafieyoon, A., Karimi, H., and Cozzani, M. (2015). Finite element analysis of miniscrew placement in mandibular alveolar bone with varied angulations. European Journal of Orthodontics, 37(1), 56-59.

Persson, M., and Thilander, B. (1997). Palatal suture closure in man from 15 to 35 years of age. American Journal of Orthodontics, 72(1), 42-52.

Pickard, M. B., Dechow, P., Rossouw, P. E., and Buschang, P. H. (2010). Effects of miniscrew orientation on implant stability and resistance to failure. American Journal of Orthodontics and Dentofacial Orthopedics, 137(1), 91-99.

Provatidis, C. G., Georgiopoulos, B., Kotinas, A., and McDonald, J. P. (2008). Evaluation of craniofacial effects during rapid maxillary expansion through combined in vivo/in vitro and finite element studies. European Journal of Orthodontics, 30(5), 437-448.

Seong, E. H., Choi, S. H., Kim, H. J., Yu, H. S., Park, Y. C., and Lee, K. J. (2018). Evaluation of the effects of miniscrew incorporation in palatal expanders for young adults using finite element analysis. Korean Journal of Orthodontics, 48(2), 81-89.

Soboleski, D., McCloskey, D., Mussari, B., Sauerbrei, E., Clarke, M., and Fletcher, A. (1997). Sonography of normal cranial sutures. American Journal of Roentgenology, 168(3), 819-821.

Suzuki, S. S., Braga, L. F. S., Fujii, D. N., Moon, W., and Suzuki, H. (2018). Corticopuncture facilitated microimplant-assisted rapid palatal expansion. Case Reports in Dentistry, 1392895.

Tonello, D. L., Ladewig, V. D. M., Guedes, F. P., Ferreira Conti, A. C. D. C., Almeida-Pedrin, R. R., and Capelozza-Filho, L. (2017). Midpalatal suture maturation in 11- to 15-year-olds: A cone-beam computed tomographic study. American Journal of Orthodontics and Dentofacial Orthopedics, 152(1), 42-48.

Winsauer, H., Vlachojannis, J., Winsauer, C., Ludwig, B., and Walter, A. (2013). A bone-borne appliance for rapid maxillary expansion. Journal of Clinical Orthodontics, 47(6), 375-381.

Yu, J. C., Martin, A., Ho, B., and Masoumy, M. (2015). Fixation Techniques. In Ferraro's Fundamentals of Maxillofacial Surgery (Taub, P. J., Patel, P. K., Buchman, S. R., and Cohen, M. N., eds.), pp. 103-113. New York: Springer.