Liquid Phase Oxydehydration of Glycerol to Acrylic Acid over Supported Silicotungstic Acid Catalyst: Influence of Reaction Parameters

Main Article Content

Sarawalee Thanasilp
Johannes W. Schwank
Vissanu Meeyoo
Sitthiphong Pengpanich
Mali Hunsom

Abstract

The liquid phase catalytic oxydehydration of glycerol to acrylic acid over supported silicotungstic acid (SiW) catalysts was carried out in the batch reactor. The effect of oxidizing agent concentration (H2O2), reaction temperatures (70 and 90 °C), types of supports (HZSM-5, SiO2 and Al2O3) and SiW loading (20-60 wt.% based on support) on the conversion and product yield were investigated. The addition of H2O2 and supported SiW catalysts significantly conducted the synergetic positive effects on glycerol conversion and acrylic acid yields as well as other desired products including glycolic acid, formic acid, acetic acid, acrolein and acrylic acid. High reaction temperature was able to enhance high glycerol conversion as the same yield of all desired products. The BET surface area of supported SiW catalysts played much more important role in the activities of oxydehydration of glycerol that this oxydehydration was more remarkable than the acidity of catalysts. Among all supported SiW catalysts, the SiW/HZSM-5 with SiW loading of 30 wt.% exhibited the highest glycerol conversion (85.54%) with the production acrylic acid yield of 30.57 % over 2.74 M H2O2 at 90 °C. The kinetics of glycerol conversion to desired products over supported SiW catalyst was explored.

Downloads

Download data is not yet available.

Article Details

How to Cite
Thanasilp, S., Schwank, J. W., Meeyoo, V., Pengpanich, S., & Hunsom, M. (2016). Liquid Phase Oxydehydration of Glycerol to Acrylic Acid over Supported Silicotungstic Acid Catalyst: Influence of Reaction Parameters. Science, Engineering and Health Studies, 10(2), 9–21. https://doi.org/10.14456/sustj.2016.16
Section
Research Articles

References

Akiyama, M., Sato, S., Takahashi, R., Inui, K., and Yokota, M. (2009). Dehydration-hydrogenation of glycerol into 1,2-propanediol at ambient hydrogen pressure. Applied Catalysis A: General, 371(1-2): 60-66.

Atia, H., Armbruster, U., and Martin, A. (2008). Insights in the mechanism of selective olefin oligomerisation catalysis using stopped-flow freeze-quench techniques: A Mo K-edge QEXAFS study. Journal of Catalysis, 284: 247-258.

Beatrice, C., Blasio, G. D., Lazzaro, M., Cannilla, C., Bonura, G., Frusteri, F., Asdrubali, F., Baldinelli, G., Presciutti, A., Fantozzi, F., Bidini, G., and Bartocci, P.(2013). Technologies for energetic exploitation of 2016.16biodiesel chain derived glycerol: Oxy-fuels production by catalytic conversion. Applied Energy, 102: 63-71.

Bordoloi, A., Vinu, A., and Halligudi, S. B. (2007). Oxyfunctionalisation of adamantane using inorganic-organic hybrid materials based on isopoly and heteropoly anions: Kinetics and mechanistic studies. Applied Catalysis A: General, 33(1):143-152.

Chieregato, A., Basile F., Concepción, P., Guidetti, S., Liosi, G., Soriano, M. D., Trevisanut, C., Cavani, F., and Nieto, J. M. L. (2012). Glycerol oxidehydration into acrolein and acrylic acid over W–V–Nb–O bronzes with hexagonal structure. Catalysis Today, 197: 58-65.

Chino, N., and Okubo, T. (2005). Nitridation mechanism of mesoporous silica: SBA-15. Microporous and Mesoporous Materials, 87(1): 15-22.

Deckwer, W. D. (1995). Microbial conversion of glycerol to 1,3 propanediol. FEMS Microbiology Reviews, 16: 143-149.

Deleplanque, J., Dubois, J. L., Devaux, J. F., and Ueda, W. (2010). Production of acrolein and acrylic acid through dehydration and oxydehydration of glycerol with mixed oxide catalysts. Catalysis Today, 157(1-4):351-358.

Demirbas, A. (2009). Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification. Energy Conversion and Management, 50(4): 923-927.

Etzkorn, W. G., Pedersen, S. E., and Snead, T. E. (2002). Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, pp. 265-288.

Ghosh, D., Sobro, I.F., and Patrick, C.H. (2012). Stoichiometric conversion of biodiesel derived crude glycerol to hydrogen: Response surface methodology study of the effects of light intensity and crude glycerol and glutamate concentration. Bioresource Technology, 106: 154-160.

Gong, L., Lu, Y., Ding, Y., Lin, R., Li, J., Dong, W., Wang, T., and Chen, W. (2010). Selective hydrogenolysis of glycerol to 1,3-propanediol over a Pt/WO3/TiO2/SiO2 catalyst in aqueous media. Applied Catalysis A: General, 390: 119-126.

Guo, X., Li, Y., Shi, R., Liu, Q., Zhan, E., and Shen, W. (2009). Co/MgO catalysts for hydrogenolysis of glycerol to 1, 2-propanediol. Applied Catalysis A: General, 371: 108-113.

Henao, C. A., Simonetti, D., Dumesic, J. A., and Maravelias, C. T. (2009). Conversion of Glycerol to Liquid Fuels. Computer Aided Chemical Engineering, 27: 1719-1724.

Huang, Z., Cui, F., Kang, H., Chen, J., and Xia, C. (2009). Characterization and catalytic properties of the CuO/SiO2 catalysts prepared by precipitation-gel method in the hydrogenolysis of glycerol to 1,2-propanediol: effect of residual sodium. Applied Catalysis A: General, 366: 288-298.

Kongjao, S., Damronglerd, S., and Hunsom, M. (2011). Electrochemical reforming of an acidic aqueous glycerol solution on Pt electrodes. Journal of Applied Electrochemistry, 41: 215-222.

Kozhevnikov, I.V.(1995). Homogeneous catalysis by transition metal oxygen anion clusters. Catalysis Reviews: Science and Engineering, 37: 311-455.

Kunkes, E. L., Simonetti, D. A., Dumesic, J. A., Pyrz, W. D., Murillo, L. E., Chen, J. G., and Buttrey, D. J. (2008). The role of rhenium in the conversion of glycerol to synthesis gas over carbon supported platinum-rhenium catalysts. Journal of Catalysis, 260: 164-177.

Lee, S.-H., and Moon, D. J. (2011). Studies on the conversion of glycerol to 1,2-propanediol over Ru-based catalyst under mild conditions. Catalysis Today, 174: 10-16.

Li, F., Xue, F., Chen, B., Huang, Z., Yuan, Y., and Yuan, G. (2012). Direct catalytic conversion of glycerol to liquid-fuel classes over Ir-Re supported on W-doped mesostructured silica. Applied Catalysis A: General, 449: 163-171.

Lili, N., Yunjie, D., Weimiao, C., Leifeng, G., Ronghe, L., Yuan, L., and Qin, X. (2008) Glycerol dehydration to acrolein over activated carbon-supported silicotungstic acids. Chinese Journal of Catalysis, 29(3): 212-214.

Liu, Y., and Wang, L. (2009). Biodiesel production from rapeseed deodorizer distillate in a packed column reactor. Chemical Engineering and Processing, 48: 1152-1156.

Markov, S. A., Averitt, J., and Waldron, B. (2011). Bioreactor for glycerol conversion into H2 by bacterium Enterobacter aerogenes. International Journal of Hydrogen Energy, 36: 262-266.

Ning, L., Ding, Y., Chen, W., Gong, L., Lin, R., Lu, Y., and Xin, Q. (2008). Glycerol dehydration to acrolein over activated carbon-supported silicotungstic acids. Chinese Journal of Catalysis, 29(3): 212-214.

Popa, A., Sasca, V, Kis, E. E., Neducin, R. M., Bokorov, M. T., and Halasz, J. (2005). Structure and texture of some keggin type hetero-polyacids supported on silica and titania. Journal of Optoelectronics and Advanced Materials, 7(6): 3169-3179.

Sabourin-Provost, G., and Hallenbeck, P. C. (2009). High yield conversion of crude glycerol fraction from biodiesel production to hydrogen by photofermentation. Bioresource Technology, 100: 3513-3517.

Shen, L., Yin, H., Wang, A., Feng, Y., Shen, Y., Wu, Z., and Jiang, T. (2012). Liquid phase dehydration of glycerol to acrolein catalyzed by silicotungstic, phosphotungstic, and phosphomolybdic acids. Chemical Engineering Journal, 180: 277-283.

Shen, L., Yin, H., Wang, A., Lu, X., and Zhang, C. (2014). Gas phase oxidehydration of glycerol to acrylic acid over Mo/V and W/V oxide catalysts. Chemical Engineering Journal, 244: 168-177.

Simonetti, D. A., Kunkes, E. L., and Dumesic, J. A. (2007). Gas-phase conversion of glycerol to synthesis gas over carbon-supported platinum and platinum–rhenium catalysts. Journal of Catalysis, 247(2): 298-306.

Smith, P. C., Ngothai, Y., Nguyen, Q. D., and O’Neill, B. K. (2009). Alkoxylation of biodiesel and its impact on low-temperature properties. Fuel, 88(4): 605-612.

Thanasilp, S., Schwank, J. W., Meeyoo, V., Pengpanich, S., and Hunsom, M. (2013). Preparation of supported POM catalysts for liquid phase oxydehydration of glycerol to acrylic acid. Journal of Molecular Catalysis A:Chemical, 380: 49-56.

Tichý, J. (1997). Oxidation of acrolein to acrylic acid over vanadium-molybdenum oxide catalysts. Applied Catalysis A: General, 157(1-2): 363-385.

Tsukuda, E., Sato, S., Takahashi, R., and Sodesawa, T. (2007). Production of acrolein from glycerol over silica-supported heteropoly acids. Catalysis Communications, 8: 1349-1353.

Ulgen, A. and Hoelderich, W. F. (2011). Conversion of glycerol to acrolein in the presence of WO3/TiO2 catalysts. Applied Catalysis A: General, 400(1-2): 34-38.

Van de Vyver, S., D’Hondt, E., Sels, B. F., and Jacobs, P. A. (2010). Preparation of Pt on NaY zeolite catalysts for conversion of glycerol into 1,2-propanediol. Studies in Surface Science and Catalysis, 175: 771-774.

Witsuthammakul, A. and Sooknoi, T. (2012) Direct conversion of glycerol to acrylic acid via integrated dehydration–oxidation bed system. Applied Catalysis A:General, 413-414: 109-116.

Zakaria, Z. Y., Linnekoski, J., and Amin, N. A. S. (2012). Catalyst screening for conversion of glycerol to light olefins. Chemical Engineering Journal, 207-208: 803-81.