Formulation and characterization of piroxicam/cyclodextrin taste masked oral lyophilisates

Main Article Content

Phennapha Saokham
Siripat Chaichit
Kanokporn Burapapadh

Abstract

Oral lyophilisates are one of the orodispersible tablets produced by lyophilization technique. Due to their porous structure, they instantly disintegrate when contacting saliva. Generally, they are suitable for drugs with a short onset of action, such as nonsteroidal anti-inflammatory drugs (NSAIDs). Therefore, formulations of piroxicam lyophilisates and their properties were investigated. Because piroxicam is classified as a low solubility but high permeability drug, a solubility enhancing agent should be included in the formulation. The influence of β-cyclodextrin (βCD) and hydroxypropyl-β-cyclodextrin (HPβCD) on disintegration time and morphology of piroxicam lyophilisates was studied. Furthermore, the satisfactory taste-masking efficiency of HPβCD in piroxicam lyophilisates was studied by sensory test. The effect of matrix polymer mixtures on disintegration time was previously evaluated. The appropriate ratio of polymer mixture, i.e., gelatin and hydroxypropyl methylcellulose (HPMC), provided lyophilisates with the fastest disintegration time (<30 s) was designated for further studies. The presence of both CDs decreased disintegration time and modified the surface and matrix of lyophilisates. With the theoretical study based on molecular mechanics methods and the investigation through the chemical shift of protons using nuclear magnetic resonance (NMR), piroxicam formed inclusion complexes with both βCD and HPβCD. Dissolution profiles of piroxicam/HPβCD lyophilisates revealed improved piroxicam solubility by inclusion complex formation. Finally, the piroxicam/HPβCD lyophilisates demonstrate the bitterness suppression in healthy volunteers.

Downloads

Download data is not yet available.

Article Details

How to Cite
Saokham, P., Chaichit, S., & Burapapadh, K. (2023). Formulation and characterization of piroxicam/cyclodextrin taste masked oral lyophilisates. Science, Engineering and Health Studies, 17, 23050008. Retrieved from https://li01.tci-thaijo.org/index.php/sehs/article/view/258387
Section
Health sciences

References

Alcaro, S., Ventura, C. A., Paolino, D., Battaglia, D., Ortuso, F., Cattel, L., Puglisi, G., and Fresta, M. (2002). Preparation, characterization, molecular modeling and in vitro activity of paclitaxel–cyclodextrin complexes. Bioorganic & Medicinal Chemistry Letters, 12(12), 1637–1641.

AlHusban, F., Perrie, Y., and Mohammed, A. R. (2010). Formulation and characterisation of lyophilised rapid disintegrating tablets using amino acids as matrix forming agents. European Journal of Pharmaceutics and Biopharmaceutics, 75(2), 254–262.

Arima, H., Higashi, T., and Motoyama, K. (2012). Improvement of the bitter taste of drugs by complexation with cyclodextrins: Applications, evaluations and mechanisms. Therapeutic Delivery, 3(5), 633–644.

Arima, H., Yunomae, K., Hirayama, F., and Uekama, K. (2001). Contribution of P-glycoprotein to the enhancing effects of dimethyl-β-cyclodextrin on oral bioavailability of tacrolimus. Journal of Pharmacology and Experimental Therapeutics, 297(2), 547–555.

Arima, H., Yunomae, K., Morikawa, T., Hirayama, F., and Uekama, K. (2004). Contribution of cholesterol and phospholipids to inhibitory effect of dimethyl-beta-cyclodextrin on efflux function of P-glycoprotein and multidrug resistance-associated protein 2 in vinblastine-resistant Caco-2 cell monolayers. Pharmaceutical Research, 21(4), 625–634.

Banchero, M., and Manna, L. (2011). Investigation of the piroxicam/hydroxypropyl-β-cyclodextrin inclusion complexation by means of a supercritical solvent in the presence of auxiliary agents. The Journal of Supercritical Fluids, 57(3), 259–266.

Banerjee, R., Chakraborty, H., and Sarkar, M. (2004). Host–guest complexation of oxicam NSAIDs with β-cyclodextrin. Biopolymers, 75(4), 355–365.

Bertoluzza, A., Rossi, M., Taddei, P., Redenti, E., Zanol, M., and Ventura, P. (1999). FT-Raman and FT-IR studies of 1:2.5 piroxicam: β-cyclodextrin inclusion compound. Journal of Molecular Structure, 480–481, 535–539.

Boateng, J. S., Matthews, K. H., Auffret, A. D., Humphrey, M. J., Eccleston, G. M., and Stevens, H. N. (2012). Comparison of the in vitro release characteristics of mucosal freeze-dried wafers and solvent-cast films containing an insoluble drug. Drug Development and Industrial Pharmacy, 38(1), 47–54.

Bordner, J., Hammen, P. D., and Whipple, E. B. (1989). Deuterium isotope effects on carbon-13 NMR shifts and the tautomeric quilibrium in N-substituted pyridyl derivatives of piroxicam. Journal of the American Chemical Society, 111(17), 6572–6578.

Bouchal, F., Skiba, M., Chaffai, N., Hallouard, F., Fatmi, S., and Lahiani-Skiba, M. (2015). Fast dissolving cyclodextrin complex of piroxicam in solid dispersion Part I: Influence of β-CD and HPβ-CD on the dissolution rate of piroxicam. International Journal of Pharmaceutics, 478(2), 625–632.

Braibanti, A., Fisicaro, E., Ghiozzi, A., Compari, C., and Bovis, G. (1998). Host-guest interactions between β-cyclodextrin and piroxicam. Reactive and Functional Polymers, 36(3), 251–255.

Chandrasekhar, R., Hassan, Z., AlHusban, F., Smith, A. M., and Mohammed, A. R. (2009). The role of formulation excipients in the development of lyophilised fast-disintegrating tablets. European Journal of Pharmaceutics and Biopharmaceutics, 72(1), 119–129.

Ciper, M., and Bodmeier, R. (2006). Modified conventional hard gelatin capsules as fast disintegrating dosage form in the oral cavity. European Journal of Pharmaceutics and Biopharmaceutics, 62(2), 178–184.

Dassault Systèmes. (2021). BIOVIA Discovery Studio. Dassault Syst mes BIOVIA, Discovery Studio Modeling Environment. [Online URL: https://www.3ds.com/products-services/biovia/resource-center/citations-and-references/] accessed on May 10, 2021.

De Sousa, F. B., Denadai, Â. M. L., Lula, I. S., Lopes, J. F., Dos Santos, H. F., De Almeida, W. B., and Sinisterra, R. D. (2008). Supramolecular complex of fluoxetine with β-cyclodextrin: An experimental and theoretical study. International Journal of Pharmaceutics, 353(1–2), 160–169.

Dixit, M., and Kulkarni, P. K. (2012). Lyophilization monophase solution technique for improvement of the solubility and dissolution of piroxicam. Research in Pharmaceutical Sciences, 7(1), 13–21.

Doliwa, A., Santoyo, S., and Ygartua, P. (2001). Influence of piroxicam: Hydroxypropyl-beta-cyclodextrin complexation on the in vitro permeation and skin retention of piroxicam. Skin Pharmacology and Applied Skin Physiology, 14(2), 97–107.

Escandar, G. M. (1999). Spectrofluorimetric determination of piroxicam in the presence and absence of beta-cyclodextrin. Analyst, 124(4), 587–591.

Farias, S., and Boateng, J. S. (2018). Development and functional characterization of composite freeze dried wafers for potential delivery of low dose aspirin for elderly people with dysphagia. International Journal of Pharmaceutics, 553(1–2), 65–83.

Fronza, G., Mele, A., Redenti, E., and Ventura, P. (1992). Proton nuclear magnetic resonance spectroscopy studies of the inclusion complex of piroxicam with β-cyclodextrin. Journal of Pharmaceutical Sciences, 81(12), 1162–1165.

Han, D., Han, Z., Liu, L., Wang, Y., Xin, S., Zhang, H., and Yu, Z. (2020). Solubility enhancement of myricetin by inclusion complexation with heptakis-O-(2-hydroxypropyl)-β-cyclodextrin: A joint experimental and theoretical study. International Journal of Molecular Sciences, 21(3), 766.

Higuchi, T., and Connors, K. A. (1965). Phase-solubility techniques. Advances in Analytical Chemistry of Instrumentation, 4, 117–212.

Inoue, Y. (1993). NMR studies of the structure and properties of cyclodextrins and their inclusion complexes. In Annual Reports on NMR Spectroscopy Vol. 27 (Webb, G. A., Ed.), pp. 59–101. Cambridge: Academic Press.

Iurian, S., Bogdan, C., Tomuță, I., Szabó-Révész, P., Chvatal, A., Leucuța, S. E., Moldovan, M., and Ambrus, R. (2017). Development of oral lyophilisates containing meloxicam nanocrystals using QbD approach. European Journal of Pharmaceutical Sciences, 104, 356–365.

Jug, M., and Bećirević-Laćan, M. (2004). Influence of hydroxypropyl-β-cyclodextrin complexation on piroxicam release from buccoadhesive tablets. European Journal of Pharmaceutical Sciences, 21(2–3), 251–260.

Kianfar, F., Ayensu, I., and Boateng, J. S. (2014). Development and physico-mechanical characterization of carrageenan and poloxamer-based lyophilized matrix as a potential buccal drug delivery system. Drug Development and Industrial Pharmacy, 40(3), 361–369.

Kinal, A., Güreşci, M., AIRrabiah, H., Abdel-Aziz, H. A., and Mostafa, G. A. E. (2019). Synthesis, spectroscopic characterization and structural investigation of new charge-transfer complexes of piroxicam with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone and chloranilic acid: Experimental and theoretical studies. Materials Express, 9(3), 203–212.

Liu, J., Jiang, N., Ma, J., and Du, X. (2009). Insight into unusual downfield NMR shifts in the inclusion complex of acridine orange with cucurbit[7]uril. European Journal of Organic Chemistry, 2009(29), 4931–4938.

Loftsson, T., and Brewster, M. E. (2010). Pharmaceutical applications of cyclodextrins: Basic science and product development. Journal of Pharmacy and Pharmacology, 62(11), 1607–1621.

Loftsson, T., Hreinsdóttir, D., and Másson, M. (2005). Evaluation of cyclodextrin solubilization of drugs. International Journal of Pharmaceutics, 302(1–2), 18–28.

Loftsson, T., Hreinsdóttir, D., and Másson, M. (2007). The complexation efficiency. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 57(1), 545–552.

Madi, F., Khatmi, D., Dhaoui, N., Bouzitouna, A., Abdaoui, M., and Boucekkine, A. (2009). Molecular model of CENS piperidine β-CD inclusion complex: DFT study. Comptes Rendus Chimie, 12(12), 1305–1312.

Marques, M. R. C., Loebenberg, R., and Almukainzi, M. (2011). Simulated biological fluids with possible application in dissolution testing. Dissolution Technologies, 18(3), 15–28.

Mirza, S., Miroshnyk, I., Habib, M. J., Brausch, J. F., and Hussain, M. D. (2010). Enhanced dissolution and oral bioavailability of piroxicam formulations: Modulating effect of phospholipids. Pharmaceutics, 2(4), 339–350.

Mizumoto, T., Masuda, Y., Yamamoto, T., Yonemochi, E., and Terada, K. (2005). Formulation design of a novel fast-disintegrating tablet. International Journal of Pharmaceutics, 306(1–2), 83–90.

Moore, J. W., and Flanner, H. H. (1996). Mathematical comparison of dissolution profiles. Pharmaceutical Technology, 20(6), 64–74.

Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., and Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791.

Mostafa, G. A. E., Al-Dosseri, A. S., and Al-Badr, A. A. (2020). Chapter Seven - Piroxicam. In Profiles of Drug Substances, Excipients and Related Methodology, Vol. 45 (Brittain, H. G., Ed.), pp. 199–474. Cambridge: Academic Press.

Mura, P. A., Mennini, N., Kosalec, I., Furlanetto, S., Orlandini, S., and Jug, M. (2015). Amidated pectin-based wafers for econazole buccal delivery: Formulation optimization and antimicrobial efficacy estimation. Carbohydrate Polymers, 121, 231–240.

Onnainty, R., Longhi, M. R., and Granero, G. E. (2011). Complex formation of chlorhexidine gluconate with hydroxypropyl-β-cyclodextrin (HPβCD) by proton nuclear magnetic resonance spectroscopy (1H NMR). Carbohydrate Research, 346(8), 1037–1046.

Paaver, U., Lust, A., Mirza, S., Rantanen, J., Veski, P., Heinämäki, J., and Kogermann, K. (2012). Insight into the solubility and dissolution behavior of piroxicam anhydrate and monohydrate forms. International Journal of Pharmaceutics, 431(1–2), 111–119.

Parkash, V., Maan, S., Deepika, Yadav, S. K., Hemlata, and Jogpal, V. (2011). Fast disintegrating tablets: Opportunity in drug delivery system. Journal of Advanced Pharmaceutical Technology & Research, 2(4), 223–235.

Polekhina, G., Gupta, A., van Denderen, B. J. W., Feil, S. C., Kemp, B. E., Stapleton, D., and Parker, M. W. (2005). Structural basis for glycogen recognition by AMP-activated protein kinase. Structure, 13(10), 1453–1462.

Raffaini, G., and Ganazzoli, F. (2020). Understanding surface interaction and inclusion complexes between piroxicam and native or crosslinked β-cyclodextrins: The role of drug concentration. Molecules, 25(12), 2848.

Raoov, M., Mohamad, S., and Abas, M. R. (2014). Synthesis and characterization of β-cyclodextrin functionalized ionic liquid polymer as a macroporous material for the removal of phenols and As(V). International Journal of Molecular Sciences, 15(1), 100–119.

Redenti, E., Zanol, M., Ventura, P., Fronza, G., Comotti, A., Taddei, P., and Bertoluzza, A. (1999). Raman and solid state 13C-NMR investigation of the structure of the 1 : 1 amorphous piroxicam : β-cyclodextrin inclusion compound. Biospectroscopy, 5(4), 243–251.

Rozou, S., Voulgari, A., and Antoniadou-Vyza, E. (2004). The effect of pH dependent molecular conformation and dimerization phenomena of piroxicam on the drug:cyclodextrin complex stoichiometry and its chromatographic behaviour: A new specific HPLC method for piroxicam:cyclodextrin formulations. European Journal of Pharmaceutical Sciences, 21(5), 661–669.

Scarpignato, C. (2013). Piroxicam-β-cyclodextrin: A GI safer piroxicam. Current Medicinal Chemistry, 20(19), 2415–2437.

Schrödinger. (2021). PyMOL. The PyMOL Molecular Graphics System (Version 2.0). [Online URL: https://pymol.org/2/support.html?] accessed on May 10, 2021.

Seager, H. (1998). Drug-delivery products and the Zydis fast-dissolving dosage form. Journal of Pharmacy and Pharmacology, 50(4), 375–382.

Shah, V. P., Tsong, Y., Sathe, P., and Liu, J.-P. (1998). In vitro dissolution profile comparison—statistics and analysis of the similarity factor, f2. Pharmaceutical Research, 15(6), 889–896.

Sheth, A. R., Bates, S., Muller, F. X., and Grant, D. J. W. (2004). Polymorphism in piroxicam. Crystal Growth & Design, 4(6), 1091–1098.

Sheth, A. R., Lubach, J. W., Munson, E. J., Muller, F. X., and Grant, D. J. W. (2005). Mechanochromism of piroxicam accompanied by intermolecular proton transfer probed by spectroscopic methods and solid-phase changes. Journal of the American Chemical Society, 127(18), 6641–6651.

Shohin, I. E., Kulinich, J. I., Ramenskaya, G. V., Abrahamsson, B., Kopp, S., Langguth, P., Polli, J. E., Shah, V. P., Groot, D. W., Barends, D. M., and Dressman, J. B. (2014). Biowaiver monographs for immediate release solid oral dosage forms: Piroxicam. Journal of Pharmaceutical Sciences, 103(2), 367–377.

Silva, M. R. M., Santos, E. P., Barros, R. C. S. A., Garcia, S., Albuquerque, M. G., Oliveira, J. S. C., and Sader, M. S. (2018). The development of a new complexation technique of hydrocortisone acetate with 2-Hydroxypropyl-β-cyclodextrin: Preparation and characterization. Journal of Analytical & Pharmaceutical Research, 7(1), 00194.

Snor, W., Liedl, E., Weiss-Greiler, P., Viernstein, H., and Wolschann, P. (2009). Density functional calculations on meloxicam–β-cyclodextrin inclusion complexes. International Journal of Pharmaceutics, 381(2), 146–152.

The United States Pharmacopeial Convention Committee of Revision. (2021a). Piroxicam Capsules. USP-NF Online. [Online URL: https://online.uspnf.com/uspnf/document/1_GUID-BB4CBA15-307B-452A-A6B7-30C1F5C9461D_2_ en-US?source=Search%20Results&highlight=piroxicam] accessed on November 24, 2022.

The United States Pharmacopeial Convention Committee of Revision. (2021b). The Dissolution Procedure: Development and Validation. USP-NF Online. [Online URL: https://online.uspnf.com/uspnf/document/1_GUIDAC788D41-90A2-4F36-A6E7769954A9ED09_3_enUS?source=Quick%20Search&highlight=dissolution] accessed on November 24, 2022.

Topuz, F. (2022). Rapid sublingual delivery of piroxicam from electrospun cyclodextrin inclusion complex nanofibers. ACS Omega, 7(39), 35083–35091.

Tsai, R.-S., Carrupt, P.-A., Tayar, N. E., Giroud, Y., Andrade, P., Testa, B., Brée, F., and Tillement, J. P. (1993). Physicochemical and structural properties of non-steroidal anti-inflammatory oxicams. Helvetica Chimica Acta, 76(2), 842–854.

Van Hees, T., Piel, G., de Hassonville, S. H., Evrard, B., and Delattre, L. (2002). Determination of the free/included piroxicam ratio in cyclodextrin complexes: Comparison between UV spectrophotometry and differential scanning calorimetry. European Journal of Pharmaceutical Sciences, 15(4), 347–353.

Vrečer, F., Vrbinc, M., and Meden, A. (2003). Characterization of piroxicam crystal modifications. International Journal of Pharmaceutics, 256(1–2), 3–15.

Xiliang, G., Yu, Y., Guoyan, Z., Guomei, Z., Jianbin, C., and Shaomin, S. (2003). Study on inclusion interaction of piroxicam with β-cyclodextrin derivatives. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 59(14), 3379–3386.

Yoshida, M., Haraguchi, T., and Uchida, T. (2014). Bitterness evaluation of acidic pharmaceutical substances (NSAIDs) using a taste sensor. Chemical and Pharmaceutical Bulletin, 62(12), 1252–1258.

Yunomae, K., Arima, H., Hirayama, F., and Uekama, K. (2003). Involvement of cholesterol in the inhibitory effect of dimethyl-beta-cyclodextrin on P-glycoprotein and MRP2 function in Caco-2 cells. Federation of European Biochemical Societies, 536(1–3), 225–231.

Zhang, X., Wu, D., Lai, J., Lu, Y., Yin, Z., and Wu, W. (2009). Piroxicam/2‐hydroxypropyl‐β‐cyclodextrin inclusion complex prepared by a new fluid-bed coating technique. Journal of Pharmaceutical Sciences, 98(2), 665–675.

Zhao, R., Tan, T., and Sandström, C. (2011). NMR studies on Puerarin and its interaction with beta-cyclodextrin. Journal of Biological Physics, 37(4), 387–400.