Vascular and perfusion density in superficial capillary plexus of macula as a biomarker for appearance of diabetic retinopathy

Main Article Content

Darina Koseva
Elitsa Hristova
Zornitsa Zlatarova

Abstract

Diabetic alteration of the retinal microenvironment causes damage to the retinal vessels. Biomarkers such as vessel density and perfusion density, measured using optical coherence tomography angiography (OCT-A), may help detect early signs of diabetic retinopathy (DR) and track disease progression. In our study, we categorized 212 individuals into 2 groups: Group I (75 healthy individuals) and Group II (137 people with diabetes). All participants underwent comprehensive eye examinations, including OCT-A with AngioPlex™ system. The measurements taken of the superficial retinal capillary plexus included vessel and perfusion density. Our findings showed that vessel and perfusion densities in the central, inner, and outer ETDRS fields, as well as the full macular area, decreased with age. Notably, vessel and perfusion densities in the inner, outer, and full ETDRS macular areas in diabetic patients with mild DR were significantly lower, compared to those in healthy subjects. In conclusion, this study emphasizes the importance of vessel and perfusion densities as biomarkers for early diabetic retinopathy. However, it is important to note that their reduction does not precede clinical signs of diabetic retinopathy.

Downloads

Download data is not yet available.

Article Details

How to Cite
Koseva, D., Hristova, E., & Zlatarova, Z. (2023). Vascular and perfusion density in superficial capillary plexus of macula as a biomarker for appearance of diabetic retinopathy. Science, Engineering and Health Studies, 17, 23050022. https://doi.org/10.69598/sehs.17.23050022
Section
Health sciences

References

Agemy, S. A., Scripsema, N. K., Shah, C. M., Chui, T., Garcia, P. M., Lee, J. G., Gentile, R. C., Hsiao, Y.-S., Zhou, Q., Ko, T., and Rosen, R. B. (2015). Retinal vascular perfusion density mapping using optical coherence tomography angiography in normals and diabetic retinopathy patients. Retina, 35(11), 2353–2363.

Al-Sheikh, M., Tepelus, T. C., Nazikyan, T., and Sadda, S. R. (2017). Repeatability of automated vessel density measurements using optical coherence tomography angiography. British Journal of Ophthalmology, 101(4), 449–452.

Balaratnasingam, C., An, D., Sakurada, Y., Lee, C. S., Lee, A. Y., Mcallister, I. L., Freund, K. B., Sarunic, M., and Yu, D.-Y. (2018). Comparisons between histology and optical coherence tomography angiography of the periarterial capillary-free zone. American Journal of Ophthalmology, 189, 55–64.

Callan, T., de Sisternes, L., Lewis, W., Bonnin, S., Santos, T., Cunha-Vaz, J. G., and Kubach, S. (2022). Comparison of vessel density and vessel perfusion measurements in SD-OCT and SS-OCT devices. Investigative Ophthalmology & Visual Science, 63(7), 2949–F0102.

Cao, D., Yang, D., Huang, Z., Zeng, Y., Wang, J., Hu, Y., and Zhang, L. (2018). Optical coherence tomography angiography discerns preclinical diabetic retinopathy in eyes of patients with type 2 diabetes without clinical diabetic retinopathy. Acta Diabetologica, 55(5), 469–477.

Chan, G., Balaratnasingam, C., Yu, P. K., Morgan, W. H., McAllister, I. L., Cringle, S. J., and Yu, D.-Y. (2012). Quantitative morphometry of perifoveal capillary networks in the human retina. Investigative Opthalmology & Visual Science, 53(9), 5502–5514.

Cheung, N., and Wong, Y. T. (2008). Diabetic retinopathy and systemic vascular complications. Progress in Retinal and Eye Research, 27(2), 161–176.

Durbin, M. K., An, L., Shemonski, N. D., Soares, M., Santos, T., Lopes, M., Neves, C., and Cunha-Vaz, J. (2017). Quantification of retinal microvascular density in optical coherence tomographic angiography images in diabetic retinopathy. JAMA Ophthalmology, 135(4), 370–376.

El-Din, A. E.-M. M. T. (2019). Comparative study between patients with subclinical diabetic retinopathy and healthy individuals in the retinal microvascular changes using optical coherence tomography angiography. Delta Journal of Ophthalmology, 20(3), 132–137.

Flaxel, C. J., Adelman, R. A., Bailey, S. T., Fawzi, A., Lim, J. I., Vemulakonda, G. A., Ying, G.-S. (2019). Diabetic retinopathy preferred practice pattern. Ophthalmology, 127(1), 66-145.

Iafe, N. A., Phasukkijwatana, N., Chen, X., and Sarraf, D. (2016). Retinal capillary density and foveal avascular zone area are age-dependent: Quantitative analysis using optical coherence tomography angiography. Investigative Ophthalmology & Visual Science, 57(13), 5780–5787.

Jia, Y., Bailey, S. T., Hwang, T. S., McClintic, S. M., Gao, S. S., Pennesi, M. E., Flaxel, C. J., Lauer, A. K., Wilson, D. J., Hornegger, J., Fujimoto, J. G., and Huang, D. (2015). Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proceedings of the National Academy of Sciences of the United States of America, 112(18), E2395–E2402.

Kim, K., Kim, E. S., and Yu, S.-Y. (2018). Optical coherence tomography angiography analysis of foveal microvascular changes and inner retinal layer thinning in patients with diabetes. British Journal of Ophthalmology, 102(9), 1226–1231.

Lei, J., Durbin, M. K., Shi, Y., Uji, A., Balasubramanian, S., Baghdasaryan, E., Al-Sheikh, M., and Sadda, S. R. (2017). Repeatability and reproducibility of superficial macular retinal vessel density measurements using optical coherence tomography angiography en face images. JAMA Ophthalmology, 135(10), 1092–1098.

Marques, I. P., Alves, D., Santos, T., Mendes, L., Lobo, C., Santos, A. R., Durbin, M., and Cunha-Vaz, J. (2020). Characterization of disease progression in the initial stages of retinopathy in type 2 diabetes: A 2-year longitudinal study. Investigative Opthalmology & Visual Science, 61(3), 20.

Mendes, L., Marques, I. P., and Cunha-Vaz, J. (2021). Comparison of different metrics for the identification of vascular changes in diabetic retinopathy using OCTA. Frontiers in Neuroscience, 15, 755730.

Moir, J., Khanna, S., and Skondra, D. (2021). Review of OCT angiography findings in diabetic retinopathy: Insights and perspectives. International Journal of Translational Medicine, 1(3), 286–305.

Nesper, P. L., Roberts, P. K., Onishi, A. C., Chai, H., Liu, L., Jampol, L. M., and Fawzi, A. A. (2017). Quantifying microvascular abnormalities with increasing severity of diabetic retinopathy using optical coherence tomography angiography. Investigative Ophthalmology & Visual Science, 58(6), BIO307–BIO315.

Shahlaee, A., Samara, W. A., Hsu, J., Say, E. A. T., Khan, M. A., Sridhar, J., Hong, B. K., Shields, C. L., and Ho, A. C. (2016). In vivo assessment of macular vascular density in healthy human eyes using optical coherence tomography angiography. American Journal of Ophthalmology, 165, 39–46.

Sivaprasad, S., and Pearce, E. (2019). The unmet need for better risk stratification of non‐proliferative diabetic retinopathy. Diabetic Medicine, 36(4), 424–433.

Solomon, S. D., Chew, E., Duh, E. J., Sobrin, L., Sun, J. K., VanderBeek, B. L., Wykoff, C. C., and Gardner, T. W. (2017). Diabetic retinopathy: A position statement by the American diabetes association. Diabetes Care, 40(3), 412–418.

Usman, M. (2018). An overview of our current understanding of diabetic macular ischemia (DMI). Cureus, 10(7), e3064.

Wong, T. Y., Sun, J., Kawasaki, R., Ruamviboonsuk, P., Gupta, N., Lansingh, V. C., Maia, M., Mathenge, W., Moreker, S., Muqit, M. M. K., Resnikoff, S., Verdaguer, J., Zhao, P., Ferris, F., Aiello, L. P., and Taylor, H. R. (2018). Guidelines on diabetic eye care: The international council of ophthalmology recommendations for screening, follow-up, referral, and treatment based on resource settings. Ophthalmology, 125(10), 1608–1622.

Zhang, M., Hwang, T. S., Dongye, C., Wilson, D. J., Huang, D., and Jia, Y. (2016). Automated quantification of nonperfusion in three retinal plexuses using projection-resolved optical coherence tomography angiography in diabetic retinopathy. Investigative Opthalmology & Visual Science, 57(13), 5101–5106.