Effect of process parameters on immobilization of recombinant Escherichia coli on pineapple peel

Main Article Content

Rohaida Che Man
Nor Hasmaliana Abdul Manas
Siti Kholijah Abdul Mudalip
Siti Zubaidah Sulaiman
Zatul Iffah Mohd Arshad
Nasratun Masngut

Abstract

Cyclodextrin can be produced from the degradation of starch using the enzyme cyclodextrin glucanotransferase (CGTase). Its favorable characteristics have seen its use in industries such as cosmetics, personal care, textiles, and pharmaceuticals. The production of CGTase by wild-type Bacillus sp. is low, so recombinant Escherichia coli has been used for higher enzyme yields. Cell lysis and plasmid instability are among the challenges that emerge during recombinant enzyme excretion that hinder the production of recombinant CGTase in E. coli. In this study, a cell immobilization technique using pineapple peel was employed to overcome this problem. The effects of changing process parameters such as pH, contact time, and temperature on the immobilization of recombinant E. coli were studied, one parameter at a time. The optimal conditions for the production of cyclodextrin were pH 8 leading to a 55.95% immobilization yield, a contact time of 24 h for a 55.16% immobilization yield, and a temperature of 25 ℃ for 53.11% immobilization yield. In brief, pineapple peel was determined to be a suitable supporting matrix and optimized process parameters increased the immobilization of recombinant E. coli, improving CGTase production while maintaining low cell lysis.

Downloads

Download data is not yet available.

Article Details

How to Cite
Che Man, R., Manas, N. H. A., Mudalip, S. K. A., Sulaiman, S. Z., Arshad, Z. I. M., & Masngut, N. (2023). Effect of process parameters on immobilization of recombinant Escherichia coli on pineapple peel. Science, Engineering and Health Studies, 17, 23030003. Retrieved from https://li01.tci-thaijo.org/index.php/sehs/article/view/258894
Section
Biological sciences

References

Abd Rahman, N. H., Jahim, J. M., Munaim, M. S. A., Rahman, R. A., Fuzi, S. F. Z., and Illias, R. M. (2020). Immobilization of recombinant Escherichia coli on multi-walled carbon nanotubes for xylitol production. Enzyme and Microbial Technology, 135, 109495.

Abdul Manaf, S. A., Mohamad Fuzi, S. F. Z., Abdul Manas, N. H., Illias, R. M., Low, K. O., Hegde, G., Che Man, R., Wan Azelee, N. I., and Matias-Peralta, H. M. (2020). Emergence of nanomaterials as potential immobilization supports for whole cell biocatalysts and cell toxicity effects. Biotechnology and Applied Biochemistry, 68(6), 1128–1138.

Aditiya, H. B., Chong, W. T., Mahlia, T. M. I., Sebayang, A. H., Berawi, M. A., and Nur, H. (2016). Second generation bioethanol potential from selected Malaysia’s biodiversity biomasses: A review. Waste Management, 47(Pt A), 46–61.

Badrulzaman, S. Z. S., Aminan, A. W., Ramli, A. N. M., Che Man, R., and Wan Azelee, N. I. (2021). Extraction and characterization of keratin from chicken and swiftlet feather. Materials Science Forum, 1025, 157–162.

Baek, C., Kim, H. Y., Na, D., and Min, J. (2015). A microfluidic system for the separation and detection of E. coli O157:H7 in soil sample using ternary interactions between humic acid, bacteria, and a hydrophilic surface. Sensors Actuators B: Chemical, 208, 238–244.

Boura, K., Dima, A., Nigam, P. S., Panagopoulos, V., Kanellaki, M., and Koutinas, A. (2022). A critical review for advances on industrialization of immobilized cell Bioreactors: Economic evaluation on cellulose hydrolysis for PHB production. Bioresource Technology, 349, 126757.

Bugg, T. D. H., Braddick, D., Dowson, C. G., and Roper, D. I. (2011). Bacterial cell wall assembly: still an attractive antibacterial target. Trends in Biotechnology, 29(4), 167–173.

Cao, S., Teng, F., Lv, J., Zhang, Q., Wang, T., Zhu, C., Li, X., Cai, Z., Xie, L., and Tao, Y. (2022). Performance of an immobilized microalgae-based process for wastewater treatment and biomass production: Nutrients removal, lipid induction, microalgae harvesting and dewatering. Bioresource Technology, 356, 127298.

Che Man, R., Ismail, A. F., Ghazali, N. F., Mohamad Fuzi, S. F. Z., and Illias, R. M. (2015). Effects of the immobilization of recombinant Escherichia coli on cyclodextrin glucanotransferase (CGTase) excretion and cell viability. Biochemical Engineering Journal, 98, 91–98.

Chwastowski, J., and Staroń, P. (2022). Influence of Saccharomyces cerevisiae yeast cells immobilized on Cocos nucifera fibers for the adsorption of Pb (II) ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 632, 127735.

Dai, X., Bill, B. D., Adams, N. G., Tillmann, U., Sloan, C., Lu, D., and Trainer, V. L. (2019). The effect of temperature and salinity on growth rate and azaspiracid cell quotas in two strains of Azadinium poporum (Dinophyceae) from Puget Sound, Washington State. Harmful Algae, 89, 101665.

de Souza, W. F. C., Pereira, I., de Lucena, F. A., Martins, L. P., Furtado, R. F., de Castro, R. J. S., and Sato, H. H. (2022). A new system of Erwinia sp. D12 cells immobilized in a matrix of alginate and algaroba gum (Prosopis juliflora): An efficient way to improve isomaltulose production. Process Biochemistry, 114, 52–58.

Erukainure, O. L., Ajiboye, J. A., Okafo, O. Y., Kosok, R. S. B., Owolab, O. F. O., and Adenekan, I. S. O. (2012). Antioxidant effect of pineapple (ananas cosmosus) peel extract on alcohol‐induced oxidative stress in splenic tissues of male albino rats. Journal of Food Biochemistry, 36(6), 643–647.

Eş, I., Vieira, J. D. G., and Amaral, A. C. (2015). Principles, techniques, and applications of biocatalyst immobilization for industrial application. Applied Microbiology and Biotechnology, 99(5), 2065–2082.

Guzik, U., Hupert-Kocurek, K., and Wojcieszyńska, D. (2014). Immobilization as a strategy for improving enzyme properties-application to oxidoreductases. Molecules, 19(7), 8995–9018.

Jonet, M. A., Mahadi, N. M., Murad, A. M. A., Rabu, A., Bakar, F. D. A., Rahim, R. A., Low, K. O., and Illias, R. M. (2012). Optimization of a heterologous signal peptide by site-directed mutagenesis for improved secretion of recombinant proteins in Escherichia coli. Journal of Molecular Microbiology and Biotechnology, 22(1), 48–58.

Kyriakou, M., Patsalou, M., Xiaris, N., Tsevis, A., Koutsokeras, L., Constantinides, G., and Koutinas, M. (2020). Enhancing bioproduction and thermotolerance in Saccharomyces cerevisiae via cell immobilization on biochar: Application in a citrus peel waste biorefinery. Renewable Energy, 155, 53–64.

Lapponi, M. J., Méndez, M. B., Trelles, J. A., and Rivero, C. W. (2022). Cell immobilization strategies for biotransformations. Current Opinion in Green Sustainable Chemistry, 33, 100565.

Li, F.-L., Zhuang, M.-Y., Shen, J.-J., Fan, X.-M., Choi, H., Lee, J.-K., and Zhang, Y.-W. (2019). Specific immobilization of Escherichia coli expressing recombinant glycerol dehydrogenase on mannose-functionalized magnetic nanoparticles. Catalysts, 9(7), 585.

Mahat, M. K., Illias, R. M., Rahman, R. A., Rashid, N. A. A., Mahmood, N. A. N., Hassan, O., Aziz, S. A., and Kamaruddin, K. (2004). Production of cyclodextrin glucanotransferase (CGTase) from alkalophilic Bacillus sp. TS1-1: Media optimization using experimental design. Enzyme and Microbial Technolology, 35(5), 467–473.

Mora, M. M. M., Sánchez, K. H., Santana, R. V., Rojas, A. P., Ramírez, H. L., and Torres-Labandeira, J. J. (2012). Partial purification and properties of cyclodextrin glycosiltransferase (CGTase) from alkalophilic Bacillus species. Springerplus, 1(1), 61.

Nor Ashikin, N. A. L., Mohamad Fuzi, S. F. Z., Abdul Manaf, S. A., Abdul Manas, N. H., Shaarani, S. M., and Illias, R. M. (2022). Optimization and characterization of immobilized E. coli for engineered thermostable xylanase excretion and cell viability. Arabian Journal of Chemistry, 15(6), 103803.

Pachelles, S., Mohamad Fuzi, S. F. Z., Che Man, R., Abdullah, A. A., and Illias, R. M. (2021). Combine strategy of treated activated charcoal and cell surface protein curli induction for enhanced performance in Escherichia coli immobilization. Process Biochemistry, 110, 26–36.

Pang, S., Wu, Y., Zhang, X., Li, B., Ouyang, J., and Ding, M. (2016). Immobilization of laccase via adsorption onto bimodal mesoporous Zr-MOF. Process Biochemistry, 51(2), 229–239.

Rahman, R. A., Illias, R. M., Mohd Nawawi, M. G., Ismail, A. F., Hassan, O., and Kamaruddin, K. (2004). Optimisation of growth medium for the production of cyclodextrin glucanotransferase from Bacillus stearothermophilus HR1 using response surface methodology. Process Biochemistry, 39(12), 2053–2060.

Řezanka, M. (2016). Monosubstituted cyclodextrins as precursors for further use. European Journal of Organic Chemistry, 2016(32), 5322–5334.

Rochex, A., Lecouturier, D., Pezron, I., and Lebeault J.-M. (2004). Adhesion of a Pseudomonas putida strain isolated from a paper machine to cellulose fibres. Applied Microbiology and Biotechnology, 65(6), 727–733.

Saraswaty, V., Risdian, C., Primadona, I., Andriyani, R., Andayani, D. G. S., and Mozef, T. (2017). Pineapple peel wastes as a potential source of antioxidant compounds. IOP Conference Series: Earth and Environmental Science, 60, 012013.

Steinberger, R. E., and Holden, P. A. (2004). Macromolecular composition of unsaturated Pseudomonas aeruginosa biofilms with time and carbon source. Biofilms, 1(1), 37–47.

Susilowati, P. E., Rajiani, N. A., Hermawan, H., Zaeni, A., and Sudiana, I. N. (2019). The use immobilized bacteria-alginate-chitin for crack remediation. IOP Conference Series: Earth Environment Science, 299, 012010.

Ta, L. N. N., Nguyen, T. H. C., and Le, V. V. M. (2016). Immobilization of Saccharomyces cerevisae cells on water hyacinth stem pieces and application to repeated batch fermentation for ethanol production. Songklanakarin Journal of Science and Technology, 38(3), 333–341.

Utomo, Y., Molo, A. D. R. P., Wonorahardo, S., Sumari, Santoso, A., Kusumaningrum, I. K., and Susanti, E. (2019). Immobilization of Zymomonas mobilis in silica from the rice husk ash. IOP Conference Series: Earth and Environmental Science, 230, 012097.