Enhanced biotransformation of starch to β-cyclodextrin by using high viability of immobilized Escherichia coli on hollow fiber membrane as whole cell biocatalyst
Main Article Content
Abstract
Application of biological processes to chemocatalysis through biotransformation of a substrate with assistance of whole cells increases efficiency of the entire process. Cell’s ability to excrete enzymes into extracellular space is crucial in a process of whole cell biocatalysis. However, issues with cell lysis and stability are frequently encountered when using free cell biocatalysts, particularly Escherichia coli. In this study, cell immobilization was studied to overcome these bottlenecks. The effects of process parameters, such as agitation rate, concentration of substrate, temperature, pH, and reaction time, on the production of β-cyclodextrin (β-CD), the excretion of β-cyclodextrin glucanotransferase (β-CGTase), and cell lysis using immobilized recombinant E. coli on a hollow fiber membrane as whole cell biocatalyst were investigated. The optimum parameters were as follows: agitation rate, 200 rpm; starch, 4%; temperature, 40°C; reaction time, 4 h; and pH 6, with 5.25–6.14 mg/mL β-CD, 29.88–35.13 U/mL β-CGTase excretion, and 0.3–1.35 U/mL β-galactosidase activity. The immobilized cells exhibited a 11–14-fold increase in β-CD, 17–19-fold increase in β-CGTase excretion, and a 92% reduction of cell lysis compared with the free cells. Therefore, the high viability of the immobilized cell was considered valuable for the efficient biotransformation of starch to β-CD.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Abd Rahim, S. N., Sulaiman, A., Ku Hamid, K. H., Aini Edama, N., & Samsu Baharuddin, A. (2015). Effect of agitation speed for enzymatic hydrolysis of tapioca slurry using encapsulated enzymes in an enzyme bioreactor. International Journal of Chemical Engineering and Applications, 6(1), 38–41. https://doi.org/10.7763/IJCEA.2015.V6.447
Abd Rahman, N. H., Jahim, J., Abdul Munaim, M. S., Rahman, R. A., Fuzi, S. F. Z., & Illias, R. (2020). Immobilization of recombinant Escherichia coli on multi-walled carbon nanotubes for xylitol production. Enzyme and Microbial Technology, 135, Article 109495. https://doi.org/10.1016/j.enzmictec.2019.109495
Abdul Manaf, S. A., Mohamad Fuzi, S. F. Z., Abdul Manas, N. H., Illias, R., Low, K. O., Hegde, G., Che Man, R., Wan Azelee, N. I., & Matias-Peralta, H. M. (2021). Emergence of nanomaterials as potential immobilization supports for whole cell biocatalysts and cell toxicity effects. Biotechnology and Applied Biochemistry, 68(6), 1128–1138. https://doi.org/10.1002/bab.2034
Abdul Manas, N. H., Illias, R., & Mahadi, N. M. (2018). Strategy in manipulating transglycosylation activity of glycosyl hydrolase for oligosaccharide production. Critical Reviews in Biotechnology, 38(2), 272–293. https://doi.org/10.1080/07388551.2017.1339664
Afzali, E., Eslaminejad, T., Amirheidari, B., & Ansari, M. (2021). Cell immobilization of Streptomyces griseobrunneus by microcrystalline cellulose for production of cyclodextrin glucanotransferase enzyme. Cogent Engineering, 8(1), Article 1868145. https://doi.org/10.1080/23311916.2020.1868145
Ahmad, I., Nawaz, N., Darwesh, N. M., ur Rahman, S., Mustafa, M. Z., Khan, S. B., & Patching, S. G. (2018). Overcoming challenges for amplified expression of recombinant proteins using Escherichia coli. Protein Expression and Purification, 144, 12–18. https://doi.org/10.1016/j.pep.2017.11.005
Baskar, G., Banu, N. A., Leuca, G. H., Gayathri, V., & Jeyashree, N. (2015). Magnetic immobilization and characterization of α-amylase as nanobiocatalyst for hydrolysis of sweet potato starch. Biochemical Engineering Journal, 102, 18–23. https://doi.org/10.1016/j.bej.2015.02.020
Bhatwa, A., Wang, W., Hassan, Y. I., Abraham, N., Li, X.-Z., & Zhou, T. (2021). Challenges associated with the formation of recombinant protein inclusion bodies in Escherichia coli and strategies to address them for industrial applications. Frontiers in Bioengineering and Biotechnology, 9, Article 630551. https://doi.org/10.3389/fbioe.2021.630551
Che Man, R., Ismail, A. F, Mohd Fuzi, S. F. Z., Ghazali, N. F., & Illias, R. M. (2016). Effects of culture conditions of immobilized recombinant Escherichia coli on cyclodextrin glucanotransferase (CGTase) excretion and cell stability. Process Biochemistry, 51(4), 474–483. http://dx.doi.org/10.1016/j.procbio.2016.01.002
Cheirsilp, B., Kitcha, S., & Maneerat, S. (2010). Kinetic characteristics of β-cyclodextrin production by cyclodextrin glycosyltransferase from newly isolated Bacillus sp. C26. Electronic Journal of Biotechnology, 13(4). http://dx.doi.org/10.2225/vol13-issue4-fulltext-6
Chou, C. P. (2007). Engineering cell physiology to enhance recombinant protein production in Escherichia coli. Applied Microbiology and Biotechnology, 76(3), 521–532. https://doi.org/10.1007/s00253-007-1039-0
Cui, Y., Meng, Y., Zhang, J., Cheng, B., Yin, H., Gao, C., Xu, P., & Yang, C. (2017). Efficient secretory expression of recombinant proteins in Escherichia coli with a novel actinomycete signal peptide. Protein Expression and Purification, 129, 69–74. https://doi.org/10.1016/j.pep.2016.09.011
Delani, T. C. D. O., Pazzetto, R., Mangolim, C. S., Fenelon, V. C., Moriwaki, C., & Matioli, G. (2012). Improved production of cyclodextrins by alkalophilic Bacilli immobilized on synthetic or loofa sponges. International Journal of Molecular Sciences, 13(10), 13294–13307. https://doi.org/10.3390/ijms131013294
Engliman, N. S., Jahim, J. M., Abdul, P. M., Ling, T. P., Tan, J. P., & Ong, C. B. (2020). Effectiveness of fouling mechanism for bacterial immobilization in polyvinylidene fluoride membranes for biohydrogen fermentation. Food and Bioproducts Processing, 120, 48–57. http://dx.doi.org/10.1016/j.fbp.2019.12.004
Fu, Z., Ab Hamid, S. B., Razak, C. N. A., Basri, M., Salleh, A. B., & Abd Rahman, R. N. Z. (2003). Secretory expression in Escherichia coli and single-step purification of a heat-stable alkaline protease. Protein Expression and Purification, 28(1), 63–68. https://doi.org/10.1016/s1046-5928(02)00637-x
Ganatsios, V., Koutinas, A. A., Bekatorou, A., Kanellaki, M., & Nigam, P. (2014). Promotion of maltose fermentation at extremely low temperatures using a cryotolerant Saccharomyces cerevisiae strain immobilized on porous cellulosic material. Enzyme and Microbial Technology, 66, 56–59. https://doi.org/10.1016/j.enzmictec.2014.08.007
Guo, Z., & Xu, X. (2006). Lipase-catalyzed glycerolysis of fats and oils in ionic liquids: A further study on the reaction system. Green Chemistry, 8(1), 54–62. https://doi.org/10.1039/B511117J
Ibrahim, A. S. S., El-Tayeb, M. A., Elbadawi, Y. B., & Al-Salamah, A. A. (2011). Effects of substrates and reaction conditions on production of cyclodextrins using cyclodextrin glucanotransferase from newly isolated Bacillus agaradhaerens KSU-A11. Electronic Journal of Biotechnology, 14(5). http://dx.doi.org/10.2225/vol14-issue5-fulltext-4
Jamil, N., Man, R. C., Suhaimi, S., Shaarani, S. M., Arshad, Z. I. M., Mudalip, S. K. A., & Sulaiman, S. Z. (2020). Effect of immobilization parameters on the immobilization of cyclodextrin glucanotranferase on hollow fiber membrane. Jurnal Teknologi, 82(1), 147–153. https://doi.org/10.11113/jt.v82.13881
Jang, K. H., Seo, J. W., Song, K. B., Kim, C. H., & Rhee, S. K. (1999). Extracellular secretion of levansucrase from Zymomonas mobilis in Escherichia coli. Bioprocess Engineering, 21(5), 453–458. https://doi.org/10.1007/PL00009084
Jonet, M. A., Mahadi, N. M., Murad, A. M. A., Rabu, A., Bakar, F. D. A., Rahim, R. A., Low, K. O., & Illias, R. M. (2012). Optimization of a heterologous signal peptide by site-directed mutagenesis for improved secretion of recombinant proteins in Escherichia coli. Journal of Molecular Microbiology and Biotechnology, 22(1), 48–58. https://doi.org/10.1159/000336524
Khlestkin, V. K., Peltek, S. E., & Kolchanov, N. A. (2018). Review of direct chemical and biochemical transformations of starch. Carbohydrate Polymer, 181, 460–476. https://doi.org/10.1016/j.carbpol.2017.10.035
Kitcha, S., Cheirsilp, B., & Maneerat, S. (2008). Cyclodextrin glycosyltransferase from a newly isolated alkalophilic Bacillus sp. C26. Songklanakarin Journal of Science and Technology, 30(6), 723–728. https://www.thaiscience.info/Journals/Article/SONG/10617444.pdf
Li, Z., Feng, Y., Li, Z., Gu, Z., Chen, S., Hong, Y., Cheng, L., & Li, C. (2020). Inclusion of tributyrin during enzymatic synthesis of cyclodextrins by β-cyclodextrin glycosyltransferase from Bacillus circulans. Food Hydrocolloids, 99, Article 105336. https://doi.org/10.1016/j.foodhyd.2019.105336
Ludwiczek, M. L., D’Angelo, I., Yalloway, G. N., Brockerman, J. A., Okon, M., Nielsen, J. E., Strynadka, N. C. J., Withers, S. G., & McIntosh, L. P. (2013). Strategies for modulating the pH-dependent activity of a family 11 glycoside hydrolase. Biochemistry, 52(18), 3138–3156. https://doi.org/10.1021/bi400034m
Man, R. C., Illias, R. M., Ramli, A. N. M., & Mudalip, S. K. A. (2022). Optimization of culture conditions of immobilized cells for enzyme excretion and cell lysis. Chemical Engineering & Technology, 45(8), 1461–1466. http://dx.doi.org/10.1002/ceat.202100425
Man, R. C., Manas, N. H. A., Mudalip, S. K. A., Sulaiman, S. Z., Arshad, Z. I. M., & Masngut, N. (2023). Effect of process parameters on immobilization of recombinant Escherichia coli on pineapple peel. Science, Engineering and Health Studies, 17, Article 23030003. https://doi.org/10.69598/sehs.17.23030003
Martins, R. F., Plieva, F. M., Santos, A., & Hatti-Kaul, R. (2003). Integrated immobilized cell reactor-adsorption system for β-cyclodextrin production: A model study using PVA-cryogel entrapped Bacillus agaradhaerens cells. Biotechnology Letters, 25(18), 1537–1543. https://doi.org/10.1023/a:1025408727114
Moriwaki, C., Mangolim, C. S., Ruiz, G. B., de Morais, G. R., Baesso, M. L., & Matioli, G. (2014). Biosynthesis of CGTase by immobilized alkalophilic bacilli and crystallization of beta-cyclodextrin: Effective techniques to investigate cell immobilization and the production of cyclodextrins. Biochemical Engineering Journal, 83, 22–32. https://doi.org/10.1016/j.bej.2013.12.004
Mudalip, S. K. A., Bakar, M. R. A., Jamal, P., Adam, F., Man, R. C., Sulaiman, S. Z., Arshad, Z. I. M., & Shaarani, S. M. (2018). Effects of solvents on polymorphism and shape of mefenamic acid crystals. MATEC Web of Conferences, 150, Article 02004. https://doi.org/10.1051/matecconf/201815002004
Muria, S. R., Cheirsilp, B., & Kitcha, S. (2011). Effect of substrate concentration and temperature on the kinetics and thermal stability of cyclodextrin glycosyltransferase for the production of β-cyclodextrin: Experimental results vs. mathematical model. Process Biochemistry, 46(7), 1399–1404. http://dx.doi.org/10.1016/j.procbio.2011.03.007
Nery, E. W., & Kubota, L. T. (2016). Evaluation of enzyme immobilization methods for paper-based devices—A glucose oxidase study. Journal of Pharmaceutical and Biomedical Analysis, 117, 551–559. https://doi.org/10.1016/j.jpba.2015.08.041
Newton, J. M., Vlahopoulou, J., & Zhou, Y. (2017). Investigating and modelling the effects of cell lysis on the rheological properties of fermentation broths. Biochemical Engineering Journal, 121, 38–48. https://doi.org/10.1016/j.bej.2017.01.009
Nguyen, D. T. T., Praveen, P., & Loh, K.-C. (2019). Co-culture of Zymomonas mobilis and Scheffersomyces stipitis immobilized in polymeric membranes for fermentation of glucose and xylose to ethanol. Biochemical Engineering Journal, 145, 145–152. http://dx.doi.org/10.1016/j.bej.2019.02.019
Pachelles, S., Fuzi, S. F. Z. M., Man, R. C., Abdullah, A. A., & Illias, R. M. (2021). Combine strategy of treated activated charcoal and cell surface protein curli induction for enhanced performance in Escherichia coli immobilization. Process Biochemistry, 110, 26–36. http://dx.doi.org/10.1016/j.procbio.2021.06.012
Pazzetto, R., de Souza Ferreira, S. B., Santos, E. J. S., Moriwaki, C., Guedes, T. A., & Matioli, G. (2012). Preservation of Bacillus firmus strain 37 and optimization of cyclodextrin biosynthesis by cells immobilized on loofa sponge. Molecules, 17(8), 9476–9488. https://doi.org/10.3390/molecules17089476
Rajput, K. N., Patel, K. C., & Trivedi, U. B. (2016). β-cyclodextrin production by cyclodextrin glucanotransferase from an alkaliphile Microbacterium terrae KNR 9 using different starch substrates. Biotechnology Research International, 2016(1), Article 2034359. https://doi.org/10.1155/2016/2034359
Sakinah, A. M. M., Ismail, A. F., Illias, R. M., Zularisam, A. W., Hassan, O., & Matsuura, T. (2014). Effect of substrate and enzyme concentration on cyclodextrin production in a hollow fibre membrane reactor system. Separation and Purification Technology, 124, 61–67. https://doi.org/10.1016/j.seppur.2014.01.005
Salwanee, S., Wan Aida, W. M., Mamot, S., Maskat, M. Y., & Ibrahim, S. (2013). Effects of enzyme concentration, temperature, pH and time on the degree of hydrolysis of protein extract from viscera of tuna (Euthynnus affinis) by using alcalase. Sains Malaysiana, 42(3), 279–287.
Schöffer, J. d. N., Klein, M. P., Rodrigues, R. C., & Hertz, P. F. (2013). Continuous production of β-cyclodextrin from starch by highly stable cyclodextrin glycosyltransferase immobilized on chitosan. Carbohydrate Polymers, 98(2), 1311–1316. https://doi.org/10.1016/j.carbpol.2013.07.044
Schöffer, J. d. N., Matte, C. R., Charqueiro, D. S., de Menezes, E. W., Costa, T. M. H., Benvenutti, E. V., Rodrigues, R. C., & Hertz, P. F. (2017). Effects of immobilization, pH and reaction time in the modulation of α-, β-or γ-cyclodextrins production by cyclodextrin glycosyltransferase: Batch and continuous process. Carbohydrate Polymers, 169, 41–49. https://doi.org/10.1016/j.carbpol.2017.04.005
Silva, L. A., Matioli, G., Zanin, G. M., & Moraes, F. F. (2021). Batch CGTase production with free and immobilized Bacillus firmus strain 37 in bovine bone charcoal. Advances in Chemical Engineering and Science, 11(1), 91–104. https://doi.org/10.4236/aces.2021.111007
Ting, W.-J., Huang, C.-M., Giridhar, N., & Wu, W.-T. (2008). An enzymatic/acid-catalyzed hybrid process for biodiesel production from soybean oil. Journal of the Chinese Institute of Chemical Engineers, 39(3), 203–210. https://doi.org/10.1016/j.jcice.2008.01.004
van der Maarel, M. J. E. C., van der Veen, B., Uitdehaag, J. C. M., Leemhuis, H., & Dijkhuizen, L. (2002). Properties and applications of starch-converting enzymes of the α-amylase family. Journal of Biotechnology, 94(2), 137–155. https://doi.org/10.1016/s0168-1656(01)00407-2
Yuvadetkun, P., Reungsang, A., & Boonmee, M. (2018). Comparison between free cells and immobilized cells of Candida Shehata in ethanol production from rice straw hydrolysate using repeated batch cultivation. Renewable Energy, 115, 634–640. https://doi.org/10.1016/j.renene.2017.08.033
Zdarta, J., Meyer, A. S., Jesionowski, T., & Pinelo, M. (2018). A general overview of support materials for enzyme immobilization: Characteristics, properties, practical utility. Catalysts, 8(2), Article 92. https://doi.org/10.3390/catal8020092