Enhanced biotransformation of starch to β-cyclodextrin by using high viability of immobilized Escherichia coli on hollow fiber membrane as whole cell biocatalyst

Main Article Content

Nurul Nabila Huda Baharudin
Rohaida Che Man
Nor Hasmaliana Abdul Manas
Siti Kholijah Abdul Mudalip
Siti Zubaidah Sulaiman
Zatul Iffah Mohd Arshad

Abstract

Application of biological processes to chemocatalysis through biotransformation of a substrate with assistance of whole cells increases efficiency of the entire process. Cell’s ability to excrete enzymes into extracellular space is crucial in a process of whole cell biocatalysis. However, issues with cell lysis and stability are frequently encountered when using free cell biocatalysts, particularly Escherichia coli. In this study, cell immobilization was studied to overcome these bottlenecks. The effects of process parameters, such as agitation rate, concentration of substrate, temperature, pH, and reaction time, on the production of β-cyclodextrin (β-CD), the excretion of β-cyclodextrin glucanotransferase (β-CGTase), and cell lysis using immobilized recombinant E. coli on a hollow fiber membrane as whole cell biocatalyst were investigated. The optimum parameters were as follows: agitation rate, 200 rpm; starch, 4%; temperature, 40°C; reaction time, 4 h; and pH 6, with 5.25–6.14 mg/mL β-CD, 29.88–35.13 U/mL β-CGTase excretion, and 0.3–1.35 U/mL β-galactosidase activity. The immobilized cells exhibited a 11–14-fold increase in β-CD, 17–19-fold increase in β-CGTase excretion, and a 92% reduction of cell lysis compared with the free cells. Therefore, the high viability of the immobilized cell was considered valuable for the efficient biotransformation of starch to β-CD.

Downloads

Download data is not yet available.

Article Details

How to Cite
Baharudin, N. N. H., Che Man, R., Abdul Manas, N. H., Abdul Mudalip, S. K., Sulaiman, S. Z., & Mohd Arshad, Z. I. (2025). Enhanced biotransformation of starch to β-cyclodextrin by using high viability of immobilized Escherichia coli on hollow fiber membrane as whole cell biocatalyst. Science, Engineering and Health Studies, 19, 25030005. https://doi.org/10.69598/sehs.19.25030005
Section
Biological sciences

References

Abd Rahim, S. N., Sulaiman, A., Ku Hamid, K. H., Aini Edama, N., & Samsu Baharuddin, A. (2015). Effect of agitation speed for enzymatic hydrolysis of tapioca slurry using encapsulated enzymes in an enzyme bioreactor. International Journal of Chemical Engineering and Applications, 6(1), 38–41. https://doi.org/10.7763/IJCEA.2015.V6.447

Abd Rahman, N. H., Jahim, J., Abdul Munaim, M. S., Rahman, R. A., Fuzi, S. F. Z., & Illias, R. (2020). Immobilization of recombinant Escherichia coli on multi-walled carbon nanotubes for xylitol production. Enzyme and Microbial Technology, 135, Article 109495. https://doi.org/10.1016/j.enzmictec.2019.109495

Abdul Manaf, S. A., Mohamad Fuzi, S. F. Z., Abdul Manas, N. H., Illias, R., Low, K. O., Hegde, G., Che Man, R., Wan Azelee, N. I., & Matias-Peralta, H. M. (2021). Emergence of nanomaterials as potential immobilization supports for whole cell biocatalysts and cell toxicity effects. Biotechnology and Applied Biochemistry, 68(6), 1128–1138. https://doi.org/10.1002/bab.2034

Abdul Manas, N. H., Illias, R., & Mahadi, N. M. (2018). Strategy in manipulating transglycosylation activity of glycosyl hydrolase for oligosaccharide production. Critical Reviews in Biotechnology, 38(2), 272–293. https://doi.org/10.1080/07388551.2017.1339664

Afzali, E., Eslaminejad, T., Amirheidari, B., & Ansari, M. (2021). Cell immobilization of Streptomyces griseobrunneus by microcrystalline cellulose for production of cyclodextrin glucanotransferase enzyme. Cogent Engineering, 8(1), Article 1868145. https://doi.org/10.1080/23311916.2020.1868145

Ahmad, I., Nawaz, N., Darwesh, N. M., ur Rahman, S., Mustafa, M. Z., Khan, S. B., & Patching, S. G. (2018). Overcoming challenges for amplified expression of recombinant proteins using Escherichia coli. Protein Expression and Purification, 144, 12–18. https://doi.org/10.1016/j.pep.2017.11.005

Baskar, G., Banu, N. A., Leuca, G. H., Gayathri, V., & Jeyashree, N. (2015). Magnetic immobilization and characterization of α-amylase as nanobiocatalyst for hydrolysis of sweet potato starch. Biochemical Engineering Journal, 102, 18–23. https://doi.org/10.1016/j.bej.2015.02.020

Bhatwa, A., Wang, W., Hassan, Y. I., Abraham, N., Li, X.-Z., & Zhou, T. (2021). Challenges associated with the formation of recombinant protein inclusion bodies in Escherichia coli and strategies to address them for industrial applications. Frontiers in Bioengineering and Biotechnology, 9, Article 630551. https://doi.org/10.3389/fbioe.2021.630551

Che Man, R., Ismail, A. F, Mohd Fuzi, S. F. Z., Ghazali, N. F., & Illias, R. M. (2016). Effects of culture conditions of immobilized recombinant Escherichia coli on cyclodextrin glucanotransferase (CGTase) excretion and cell stability. Process Biochemistry, 51(4), 474–483. http://dx.doi.org/10.1016/j.procbio.2016.01.002

Cheirsilp, B., Kitcha, S., & Maneerat, S. (2010). Kinetic characteristics of β-cyclodextrin production by cyclodextrin glycosyltransferase from newly isolated Bacillus sp. C26. Electronic Journal of Biotechnology, 13(4). http://dx.doi.org/10.2225/vol13-issue4-fulltext-6

Chou, C. P. (2007). Engineering cell physiology to enhance recombinant protein production in Escherichia coli. Applied Microbiology and Biotechnology, 76(3), 521–532. https://doi.org/10.1007/s00253-007-1039-0

Cui, Y., Meng, Y., Zhang, J., Cheng, B., Yin, H., Gao, C., Xu, P., & Yang, C. (2017). Efficient secretory expression of recombinant proteins in Escherichia coli with a novel actinomycete signal peptide. Protein Expression and Purification, 129, 69–74. https://doi.org/10.1016/j.pep.2016.09.011

Delani, T. C. D. O., Pazzetto, R., Mangolim, C. S., Fenelon, V. C., Moriwaki, C., & Matioli, G. (2012). Improved production of cyclodextrins by alkalophilic Bacilli immobilized on synthetic or loofa sponges. International Journal of Molecular Sciences, 13(10), 13294–13307. https://doi.org/10.3390/ijms131013294

Engliman, N. S., Jahim, J. M., Abdul, P. M., Ling, T. P., Tan, J. P., & Ong, C. B. (2020). Effectiveness of fouling mechanism for bacterial immobilization in polyvinylidene fluoride membranes for biohydrogen fermentation. Food and Bioproducts Processing, 120, 48–57. http://dx.doi.org/10.1016/j.fbp.2019.12.004

Fu, Z., Ab Hamid, S. B., Razak, C. N. A., Basri, M., Salleh, A. B., & Abd Rahman, R. N. Z. (2003). Secretory expression in Escherichia coli and single-step purification of a heat-stable alkaline protease. Protein Expression and Purification, 28(1), 63–68. https://doi.org/10.1016/s1046-5928(02)00637-x

Ganatsios, V., Koutinas, A. A., Bekatorou, A., Kanellaki, M., & Nigam, P. (2014). Promotion of maltose fermentation at extremely low temperatures using a cryotolerant Saccharomyces cerevisiae strain immobilized on porous cellulosic material. Enzyme and Microbial Technology, 66, 56–59. https://doi.org/10.1016/j.enzmictec.2014.08.007

Guo, Z., & Xu, X. (2006). Lipase-catalyzed glycerolysis of fats and oils in ionic liquids: A further study on the reaction system. Green Chemistry, 8(1), 54–62. https://doi.org/10.1039/B511117J

Ibrahim, A. S. S., El-Tayeb, M. A., Elbadawi, Y. B., & Al-Salamah, A. A. (2011). Effects of substrates and reaction conditions on production of cyclodextrins using cyclodextrin glucanotransferase from newly isolated Bacillus agaradhaerens KSU-A11. Electronic Journal of Biotechnology, 14(5). http://dx.doi.org/10.2225/vol14-issue5-fulltext-4

Jamil, N., Man, R. C., Suhaimi, S., Shaarani, S. M., Arshad, Z. I. M., Mudalip, S. K. A., & Sulaiman, S. Z. (2020). Effect of immobilization parameters on the immobilization of cyclodextrin glucanotranferase on hollow fiber membrane. Jurnal Teknologi, 82(1), 147–153. https://doi.org/10.11113/jt.v82.13881

Jang, K. H., Seo, J. W., Song, K. B., Kim, C. H., & Rhee, S. K. (1999). Extracellular secretion of levansucrase from Zymomonas mobilis in Escherichia coli. Bioprocess Engineering, 21(5), 453–458. https://doi.org/10.1007/PL00009084

Jonet, M. A., Mahadi, N. M., Murad, A. M. A., Rabu, A., Bakar, F. D. A., Rahim, R. A., Low, K. O., & Illias, R. M. (2012). Optimization of a heterologous signal peptide by site-directed mutagenesis for improved secretion of recombinant proteins in Escherichia coli. Journal of Molecular Microbiology and Biotechnology, 22(1), 48–58. https://doi.org/10.1159/000336524

Khlestkin, V. K., Peltek, S. E., & Kolchanov, N. A. (2018). Review of direct chemical and biochemical transformations of starch. Carbohydrate Polymer, 181, 460–476. https://doi.org/10.1016/j.carbpol.2017.10.035

Kitcha, S., Cheirsilp, B., & Maneerat, S. (2008). Cyclodextrin glycosyltransferase from a newly isolated alkalophilic Bacillus sp. C26. Songklanakarin Journal of Science and Technology, 30(6), 723–728. https://www.thaiscience.info/Journals/Article/SONG/10617444.pdf

Li, Z., Feng, Y., Li, Z., Gu, Z., Chen, S., Hong, Y., Cheng, L., & Li, C. (2020). Inclusion of tributyrin during enzymatic synthesis of cyclodextrins by β-cyclodextrin glycosyltransferase from Bacillus circulans. Food Hydrocolloids, 99, Article 105336. https://doi.org/10.1016/j.foodhyd.2019.105336

Ludwiczek, M. L., D’Angelo, I., Yalloway, G. N., Brockerman, J. A., Okon, M., Nielsen, J. E., Strynadka, N. C. J., Withers, S. G., & McIntosh, L. P. (2013). Strategies for modulating the pH-dependent activity of a family 11 glycoside hydrolase. Biochemistry, 52(18), 3138–3156. https://doi.org/10.1021/bi400034m

Man, R. C., Illias, R. M., Ramli, A. N. M., & Mudalip, S. K. A. (2022). Optimization of culture conditions of immobilized cells for enzyme excretion and cell lysis. Chemical Engineering & Technology, 45(8), 1461–1466. http://dx.doi.org/10.1002/ceat.202100425

Man, R. C., Manas, N. H. A., Mudalip, S. K. A., Sulaiman, S. Z., Arshad, Z. I. M., & Masngut, N. (2023). Effect of process parameters on immobilization of recombinant Escherichia coli on pineapple peel. Science, Engineering and Health Studies, 17, Article 23030003. https://doi.org/10.69598/sehs.17.23030003

Martins, R. F., Plieva, F. M., Santos, A., & Hatti-Kaul, R. (2003). Integrated immobilized cell reactor-adsorption system for β-cyclodextrin production: A model study using PVA-cryogel entrapped Bacillus agaradhaerens cells. Biotechnology Letters, 25(18), 1537–1543. https://doi.org/10.1023/a:1025408727114

Moriwaki, C., Mangolim, C. S., Ruiz, G. B., de Morais, G. R., Baesso, M. L., & Matioli, G. (2014). Biosynthesis of CGTase by immobilized alkalophilic bacilli and crystallization of beta-cyclodextrin: Effective techniques to investigate cell immobilization and the production of cyclodextrins. Biochemical Engineering Journal, 83, 22–32. https://doi.org/10.1016/j.bej.2013.12.004

Mudalip, S. K. A., Bakar, M. R. A., Jamal, P., Adam, F., Man, R. C., Sulaiman, S. Z., Arshad, Z. I. M., & Shaarani, S. M. (2018). Effects of solvents on polymorphism and shape of mefenamic acid crystals. MATEC Web of Conferences, 150, Article 02004. https://doi.org/10.1051/matecconf/201815002004

Muria, S. R., Cheirsilp, B., & Kitcha, S. (2011). Effect of substrate concentration and temperature on the kinetics and thermal stability of cyclodextrin glycosyltransferase for the production of β-cyclodextrin: Experimental results vs. mathematical model. Process Biochemistry, 46(7), 1399–1404. http://dx.doi.org/10.1016/j.procbio.2011.03.007

Nery, E. W., & Kubota, L. T. (2016). Evaluation of enzyme immobilization methods for paper-based devices—A glucose oxidase study. Journal of Pharmaceutical and Biomedical Analysis, 117, 551–559. https://doi.org/10.1016/j.jpba.2015.08.041

Newton, J. M., Vlahopoulou, J., & Zhou, Y. (2017). Investigating and modelling the effects of cell lysis on the rheological properties of fermentation broths. Biochemical Engineering Journal, 121, 38–48. https://doi.org/10.1016/j.bej.2017.01.009

Nguyen, D. T. T., Praveen, P., & Loh, K.-C. (2019). Co-culture of Zymomonas mobilis and Scheffersomyces stipitis immobilized in polymeric membranes for fermentation of glucose and xylose to ethanol. Biochemical Engineering Journal, 145, 145–152. http://dx.doi.org/10.1016/j.bej.2019.02.019

Pachelles, S., Fuzi, S. F. Z. M., Man, R. C., Abdullah, A. A., & Illias, R. M. (2021). Combine strategy of treated activated charcoal and cell surface protein curli induction for enhanced performance in Escherichia coli immobilization. Process Biochemistry, 110, 26–36. http://dx.doi.org/10.1016/j.procbio.2021.06.012

Pazzetto, R., de Souza Ferreira, S. B., Santos, E. J. S., Moriwaki, C., Guedes, T. A., & Matioli, G. (2012). Preservation of Bacillus firmus strain 37 and optimization of cyclodextrin biosynthesis by cells immobilized on loofa sponge. Molecules, 17(8), 9476–9488. https://doi.org/10.3390/molecules17089476

Rajput, K. N., Patel, K. C., & Trivedi, U. B. (2016). β-cyclodextrin production by cyclodextrin glucanotransferase from an alkaliphile Microbacterium terrae KNR 9 using different starch substrates. Biotechnology Research International, 2016(1), Article 2034359. https://doi.org/10.1155/2016/2034359

Sakinah, A. M. M., Ismail, A. F., Illias, R. M., Zularisam, A. W., Hassan, O., & Matsuura, T. (2014). Effect of substrate and enzyme concentration on cyclodextrin production in a hollow fibre membrane reactor system. Separation and Purification Technology, 124, 61–67. https://doi.org/10.1016/j.seppur.2014.01.005

Salwanee, S., Wan Aida, W. M., Mamot, S., Maskat, M. Y., & Ibrahim, S. (2013). Effects of enzyme concentration, temperature, pH and time on the degree of hydrolysis of protein extract from viscera of tuna (Euthynnus affinis) by using alcalase. Sains Malaysiana, 42(3), 279–287.

Schöffer, J. d. N., Klein, M. P., Rodrigues, R. C., & Hertz, P. F. (2013). Continuous production of β-cyclodextrin from starch by highly stable cyclodextrin glycosyltransferase immobilized on chitosan. Carbohydrate Polymers, 98(2), 1311–1316. https://doi.org/10.1016/j.carbpol.2013.07.044

Schöffer, J. d. N., Matte, C. R., Charqueiro, D. S., de Menezes, E. W., Costa, T. M. H., Benvenutti, E. V., Rodrigues, R. C., & Hertz, P. F. (2017). Effects of immobilization, pH and reaction time in the modulation of α-, β-or γ-cyclodextrins production by cyclodextrin glycosyltransferase: Batch and continuous process. Carbohydrate Polymers, 169, 41–49. https://doi.org/10.1016/j.carbpol.2017.04.005

Silva, L. A., Matioli, G., Zanin, G. M., & Moraes, F. F. (2021). Batch CGTase production with free and immobilized Bacillus firmus strain 37 in bovine bone charcoal. Advances in Chemical Engineering and Science, 11(1), 91–104. https://doi.org/10.4236/aces.2021.111007

Ting, W.-J., Huang, C.-M., Giridhar, N., & Wu, W.-T. (2008). An enzymatic/acid-catalyzed hybrid process for biodiesel production from soybean oil. Journal of the Chinese Institute of Chemical Engineers, 39(3), 203–210. https://doi.org/10.1016/j.jcice.2008.01.004

van der Maarel, M. J. E. C., van der Veen, B., Uitdehaag, J. C. M., Leemhuis, H., & Dijkhuizen, L. (2002). Properties and applications of starch-converting enzymes of the α-amylase family. Journal of Biotechnology, 94(2), 137–155. https://doi.org/10.1016/s0168-1656(01)00407-2

Yuvadetkun, P., Reungsang, A., & Boonmee, M. (2018). Comparison between free cells and immobilized cells of Candida Shehata in ethanol production from rice straw hydrolysate using repeated batch cultivation. Renewable Energy, 115, 634–640. https://doi.org/10.1016/j.renene.2017.08.033

Zdarta, J., Meyer, A. S., Jesionowski, T., & Pinelo, M. (2018). A general overview of support materials for enzyme immobilization: Characteristics, properties, practical utility. Catalysts, 8(2), Article 92. https://doi.org/10.3390/catal8020092