Performance of up-flow microbial fuel cells in synthetic landfill leachate treatment explained by discrete effects of hydraulic retention time and initial substrate concentration
Main Article Content
Abstract
This study aimed to explain the performance of microbial fuel cells (MFCs) using hydraulic retention time (HRT) and initial substrate concentration (C0) independently. In two experiments, synthetic landfill leachate (35 L/d) was applied to up-flow MFCs at 6 different HRTs and 6 different C0s. Water quality parameters such as chemical oxygen demand (COD) and nutrient content were analyzed during the process. The up-flow MFCs produced 1–80 mW/m2 of power density with removal efficiencies of 30–87% for COD, 3–84% for total nitrogen (TN), and 8–71% for total phosphorus (TP), during the leachate treatment. Multiple regression analysis of the entire data set revealed that HRT and C0 had a favorable effect on the removal rates of COD (Rrate,COD) and TN (Rrate,TN). TP removal rate (Rrate,TP) was found to be positively influenced by initial TP concentration (C0,TP) but negatively influenced by HRT. In terms of electricity generation, HRT, followed by coulombic efficiency (CE), Rrate,COD, initial COD concentration (C0,COD), internal resistance (Rin), and Rrate,TP were identified as significant elements whose increase could boost power density production. The MFC performance was found to be consistent and reproducible under similar operating conditions.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Alkalay, D., Guerrero, L., Lema, J. M., Mendez, R., & Chamy, R. (1998). Review: Anaerobic treatment of municipal sanitary landfill leachates: The problem of refractory and toxic components. World Journal of Microbiology and Biotechnology, 14(3), 309–320. https://doi.org/10.1023/A:1008876107787
APHA (2016). Standard methods for the examination of water and wastewater (20th ed.). American Public Health Association. https://www.pdfdrive.com/standard-methods-for-the-examination-of-water-and-wastewater-e11311928.html
Borghei, S. M., Sharbatmaleki, M., Pourrezaie, P., & Borghei, G. (2008). Kinetics of organic removal in fixed-bed aerobic biological reactor. Bioresource Technology, 99(5), 1118–1124. https://doi.org/10.1016/j.biortech.2007.02.037
Chae, K. J., Choi, M. J., Kim, K. Y., Ajayi, F. F., Park, W., Kim, C. W., & Kim, I. S. (2010). Methanogenesis control by employing various environmental stress conditions in two-chambered microbial fuel cells. Bioresource Technology, 101(14), 5350–5357. https://doi.org/10.1016/j.biortech.2010.02.035
Campos, J. L., Méndez, R., & Mosquera-Corral, A. (2015). Influence of dissolved oxygen concentration on the start-up of the anammox-based process: ELAN®. Water Science & Technology, 72(4), 520–527. https://doi.org/10.2166/wst.2015.233
Elakkiya, E., & Matheswaran, M. (2013). Comparison of anodic metabolisms in bioelectricity production during treatment of dairy wastewater in microbial fuel cell. Bioresource Technology, 136, 407–412. https://doi.org/10.1016/j.biortech.2013.02.113
Englande, A. J. Jr., Krenkel, P., & Shamas, J. (2015). Wastewater treatment & water reclamation. Reference Module in Earth Systems and Environmental Sciences, 2023, 639–670. https://doi.org/10.1016/B978-0-12-409548-9.09508-7
Gálvez, A., Greenman, J., & Ieropoulos, I. (2009). Landfill leachate treatment with microbial fuel cells; scale-up through plurality. Bioresource Technology, 100(21), 5085–5091. https://doi.org/10.1016/j.biortech.2009.05.061
Gou, Y. (2001). Determination of total nitrogen in water samples by spectrophotometry using phenol after alkaline peroxodisulfate digestion. Bunseki Kagaku, 50(7), 481–486. https://doi.org/10.2116/bunsekikagaku.50.481
Greenman, J., Galvez, A., Giusti, L., & Ieropoulos, I. (2009). Electricity from landfill leachate using microbial fuel cells: Comparison with a biological aerated filter. Enzyme and Microbial Technology, 44(2), 112–119. https://doi.org/10.1016/j.enzmictec.2008.09.012
Halim, A. A., Abidin, Z., Nazurah, N., Normah, A., Anuar, I., Othman, S. M., & Mohd, I. W. (2011). Ammonia and COD removal from synthetic leachate using rice husk composite adsorbent. Journal of Urban and Environmental Engineering, 5(1), 24–31. https://doi.org/10.4090/juee.2011.v5n1.024031
He, Z., Minteer, S. D., & Angenent, L. T. (2005) Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environmental Science & Technology, 39(14), 5262–5267. https://doi.org/10.1021/es0502876
He, Y., Liu, Z., Xing, X. H., Li, B., Zhang, Y., Shen, R., Zhu, Z., & Duan, N. (2015). Carbon nanotubes simultaneously as the anode and microbial carrier for up-flow fixed-bed microbial fuel cell. Biochemical Engineering Journal, 94, 39–44. https://doi.org/10.1016/j.bej.2014.11.006
Ieropoulos, I., Greenman J., & Melhuish, C. (2008). Microbial fuel cells based on carbon veil electrodes: Stack configuration and scalability. International Journal of Energy Research, 32(13), 1228–1240. https://doi.org/10.1002/er.1419
Kim, H., Kim, B., & Yu, J. (2015). Power generation response to readily biodegradable COD in single-chamber microbial fuel cells. Bioresource Technology, 186, 136–140. https://doi.org/10.1016/j.biortech.2015.03.066
Klaisongkram, N., & Holasut, K. (2015). Electricity generation of plant microbial fuel cell (PMFC) using Cyperus involucratus R. Engineering and Applied Science Research, 42(1), 117–124. https://doi.org/10.14456/kkuenj.2015.2
Kumar, M., & Lin, J. G. (2010). Co-existence of anammox and denitrification for simultaneous nitrogen and carbon removal-Strategies and issues. Journal of Hazardous Materials, 178(1-3), 1–9. https://doi.org/10.1016/j.jhazmat.2010.01.077
Lie, E., & Welander, T. (1994). Influence of dissolved oxygen and oxidation-reduction potential on the denitrification rate of activated sludge. Water Science & Technology, 30(6), 91–100. https://doi.org/10.2166/wst.1994.0256
Logan, B. E. (2007). Microbial fuel cells, (2nd ed.). John Wiley & Sons.
Min, B., & Logan, B. E. (2004). Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environmental Science & Technology, 38(21), 5809–5814. https://doi.org/10.1021/es0491026
Molognoni, D., Puig, S., Balaguer, M. D., Capodaglio, A. G., Callegari, A., & Colprim, J. (2016). Multiparametric control for enhanced biofilm selection in microbial fuel cells. Journal of Chemical Technology & Biotechnology, 91(6), 1720–1727. https://doi.org/10.1002/jctb.4760
Mongkulphit, S., Pengchai, P., & Suwannata, N. (2021a). Influence of very high flow rates on performance of biofilter-microbial fuel cells. International Journal of Environmental Science and Development, 12(3), 69–74. https://doi.org/10.18178/ijesd.2021.12.3.1320
Mongkulphit, S., Siripratum, S., Chumroen, W., & Pengchai, P. (2021b). Roles of packed bed porosity on performance of biofilter microbial fuel cell in synthetic landfill leachate treatment. GMSARN International Journal, 15(4), 360–365.
Nor Faekah, I., Fatihah, S., & Mohamed, Z. S. (2020). Kinetic evaluation of a partially packed upflow anaerobic fixed film reactor treating low-strength synthetic rubber wastewater. Heliyon, 6(3), Article e03594. https://doi.org/10.1016/j.heliyon.2020.e03594
Pinto, R. P., Srinivasan, B., Guiot, S. R., & Tartakovsky, B. (2011). The effect of real-time external resistance optimization on microbial fuel cell performance. Water Research, 45(4), 1571–1578. https://doi.org/10.1016/j.watres.2010.11.033
Puig, S., Serra, M., Coma, M., Cabré, M., Balaguer, M. D., & Colprim, J. (2011). Microbial fuel cell application in landfill leachate treatment. Journal of Hazardous Materials, 185(2-3), 763–767. https://doi.org/10.1016/j.jhazmat.2010.09.086
Rajagopal, R., Torrijos, M., Kumar, P., & Mehrotra, I. (2013). Substrate removal kinetics in high-rate upflow anaerobic filters packed with low-density polyethylene media treating high-strength agro-food wastewaters. Journal of Environmental Management, 116, 101–106. https://doi.org/10.1016/j.jenvman.2012.11.032
Siripratuma, S., & Pengchai, P. (2022). Performance investigation of the reverse anoxic/anaerobic/oxic microbial fuel cell. Engineering Journal, 26(10), 11–25. https://doi.org/10.4186/ej.2022.26.10.11
Shehab, O., Deininger, R., Porta, F., & Wojewski, T. (1996). Optimizing phosphorus removal at the Ann Arbor wastewater treatment plant. Water Science & Technology, 34(1-2), 493–499. https://doi.org/10.1016/0273-1223(96)00548-3
Sonwani, R. K., Swain, G., Giri, B. S., Singh, R. S., & Rai, B. N. (2019). A novel comparative study of modified carriers in moving bed biofilm reactor for the treatment of wastewater: Process optimization and kinetic study. Bioresource Technology, 281, 335–342. https://doi.org/10.1016/j.biortech.2019.02.121
Sukkasem, C. (2011). Microbial fuel cell: Novel technology “convert wastewater to electricity”. Engineering and Applied Science Research, 38(3), 347–362.
Sun, G., Kang, K., Qiu, L., Guo, X., & Zhu, M. (2019). Electrochemical performance and microbial community analysis in air cathode microbial fuel cells fuelled with pyroligneous liquor. Bioelectrochemistry, 126, 12–19. https://doi.org/10.1016/j.bioelechem.2018.11.006
Swain, G., Singh, S., Sonwani, R. K., Singh, R. S., Jaiswal, R. P., & Rai, B. N. (2021). Removal of acid orange 7 dye in a packed bed bioreactor: Process optimization using response surface methodology and kinetic study. Bioresource Technology Reports, 13, Article 100620. https://doi.org/10.1016/j.biteb.2020.100620
Tamilarasan, K., Banu, J. R., Jayashree, C., Yogalakshmi, K. N., & Gokulakrishnan, K. (2017). Effect of organic loading rate on electricity generating potential of upflow anaerobic microbial fuel cell treating surgical cotton industry wastewater. Journal of Environmental Chemical Engineering, 5(1), 1021–1026. https://doi.org/10.1016/j.jece.2017.01.025
Tao, Q., Luo, J., Zhou, J., Zhou, S., Liu, G., & Zhang, R. (2014). Effect of dissolved oxygen on nitrogen and phosphorus removal and electricity production in microbial fuel cell. Bioresource Technology, 164, 402–407. https://doi.org/10.1016/j.biortech.2014.05.002
Vazquez-Larios, A. L., Poggi-Varaldo, H. M., Solorza-Feria, O., & Rinderknecht-Seijas, N. (2015). Effect of type of inoculum on microbial fuel cell performance that used RuxMoySez as cathodic catalyst. International Journal of Hydrogen Energy, 40(48), 17402–17412. https://doi.org/10.1016/j.ijhydene.2015.09.143
Yanuka-Golub, K., Reshef, L., Rishpon, J., & Gophna, U. (2016). Community structure dynamics during startup in microbial fuel cells - The effect of phosphate concentrations. Bioresource Technology, 212, 151–159. https://doi.org/10.1016/j.biortech.2016.04.016
Ye, Y., Ngo, H. H., Guo, W., Chang, S. W., Nguyen, D. D., Liu, Y., Nghiem, L. D., Zhang, X., & Wang, J. (2019). Effect of organic loading rate on the recovery of nutrients and energy in a dual-chamber microbial fuel cell. Bioresource Technology, 281(18), 367–373. https://doi.org/10.1016/j.biortech.2019.02.108
You, Q. G., Wang, J. H., Qi, G. X., Zhou, Y. M., Guo, Z. W., Shen, Y., & Gao, X. (2020). Anammox and partial denitrification coupling: A review. RSC Advances, 10(21), 12554–12572. https://doi.org/10.1039/D0RA00001A
You, S. J., Zhao, Q. L., Jiang, J. Q., Zhang, J. N., & Zhao, S. Q. (2006). Sustainable approach for leachate treatment: Electricity generation in microbial fuel cell. Journal of Environmental Science and Health, 41(12), 2721–2734. https://doi.org/10.1080/10934520600966284
Zhang, X., He, W., Ren, L., Stager, J., Evans, P. J., & Logan, B. E. (2015). COD removal characteristics in air-cathode microbial fuel cells. Bioresource Technology, 176, 23–31. https://doi.org/10.1016/j.biortech.2014.11.001
Zhao, Y., Ma, Y., Li, T., Bo, X., Wang, J., Li, P., Zhong, L., & Sun, Y. (2014). Treatment of sewage and synchronous electricity generation characteristics by microbial fuel cell. Journal of Fuel Chemistry and Technology, 42(4), 481–486. https://doi.org/10.1016/S1872-5813(14)60024-4.