Performance of up-flow microbial fuel cells in synthetic landfill leachate treatment explained by discrete effects of hydraulic retention time and initial substrate concentration

Main Article Content

Songyot Mongkulphit
Petch Pengchai

Abstract

This study aimed to explain the performance of microbial fuel cells (MFCs) using hydraulic retention time (HRT) and initial substrate concentration (C0) independently. In two experiments, synthetic landfill leachate (35 L/d) was applied to up-flow MFCs at 6 different HRTs and 6 different C0s. Water quality parameters such as chemical oxygen demand (COD) and nutrient content were analyzed during the process. The up-flow MFCs produced 1–80 mW/m2 of power density with removal efficiencies of 30–87% for COD, 3–84% for total nitrogen (TN), and 8–71% for total phosphorus (TP), during the leachate treatment. Multiple regression analysis of the entire data set revealed that HRT and C0 had a favorable effect on the removal rates of COD (Rrate,COD) and TN (Rrate,TN). TP removal rate (Rrate,TP) was found to be positively influenced by initial TP concentration (C0,TP) but negatively influenced by HRT. In terms of electricity generation, HRT, followed by coulombic efficiency (CE), Rrate,COD, initial COD concentration (C0,COD), internal resistance (Rin), and Rrate,TP were identified as significant elements whose increase could boost power density production. The MFC performance was found to be consistent and reproducible under similar operating conditions.

Downloads

Download data is not yet available.

Article Details

How to Cite
Mongkulphit, S., & Pengchai, P. (2025). Performance of up-flow microbial fuel cells in synthetic landfill leachate treatment explained by discrete effects of hydraulic retention time and initial substrate concentration. Science, Engineering and Health Studies, 19, 25040014. https://doi.org/10.69598/sehs.19.25040014
Section
Engineering

References

Alkalay, D., Guerrero, L., Lema, J. M., Mendez, R., & Chamy, R. (1998). Review: Anaerobic treatment of municipal sanitary landfill leachates: The problem of refractory and toxic components. World Journal of Microbiology and Biotechnology, 14(3), 309–320. https://doi.org/10.1023/A:1008876107787

APHA (2016). Standard methods for the examination of water and wastewater (20th ed.). American Public Health Association. https://www.pdfdrive.com/standard-methods-for-the-examination-of-water-and-wastewater-e11311928.html

Borghei, S. M., Sharbatmaleki, M., Pourrezaie, P., & Borghei, G. (2008). Kinetics of organic removal in fixed-bed aerobic biological reactor. Bioresource Technology, 99(5), 1118–1124. https://doi.org/10.1016/j.biortech.2007.02.037

Chae, K. J., Choi, M. J., Kim, K. Y., Ajayi, F. F., Park, W., Kim, C. W., & Kim, I. S. (2010). Methanogenesis control by employing various environmental stress conditions in two-chambered microbial fuel cells. Bioresource Technology, 101(14), 5350–5357. https://doi.org/10.1016/j.biortech.2010.02.035

Campos, J. L., Méndez, R., & Mosquera-Corral, A. (2015). Influence of dissolved oxygen concentration on the start-up of the anammox-based process: ELAN®. Water Science & Technology, 72(4), 520–527. https://doi.org/10.2166/wst.2015.233

Elakkiya, E., & Matheswaran, M. (2013). Comparison of anodic metabolisms in bioelectricity production during treatment of dairy wastewater in microbial fuel cell. Bioresource Technology, 136, 407–412. https://doi.org/10.1016/j.biortech.2013.02.113

Englande, A. J. Jr., Krenkel, P., & Shamas, J. (2015). Wastewater treatment & water reclamation. Reference Module in Earth Systems and Environmental Sciences, 2023, 639–670. https://doi.org/10.1016/B978-0-12-409548-9.09508-7

Gálvez, A., Greenman, J., & Ieropoulos, I. (2009). Landfill leachate treatment with microbial fuel cells; scale-up through plurality. Bioresource Technology, 100(21), 5085–5091. https://doi.org/10.1016/j.biortech.2009.05.061

Gou, Y. (2001). Determination of total nitrogen in water samples by spectrophotometry using phenol after alkaline peroxodisulfate digestion. Bunseki Kagaku, 50(7), 481–486. https://doi.org/10.2116/bunsekikagaku.50.481

Greenman, J., Galvez, A., Giusti, L., & Ieropoulos, I. (2009). Electricity from landfill leachate using microbial fuel cells: Comparison with a biological aerated filter. Enzyme and Microbial Technology, 44(2), 112–119. https://doi.org/10.1016/j.enzmictec.2008.09.012

Halim, A. A., Abidin, Z., Nazurah, N., Normah, A., Anuar, I., Othman, S. M., & Mohd, I. W. (2011). Ammonia and COD removal from synthetic leachate using rice husk composite adsorbent. Journal of Urban and Environmental Engineering, 5(1), 24–31. https://doi.org/10.4090/juee.2011.v5n1.024031

He, Z., Minteer, S. D., & Angenent, L. T. (2005) Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environmental Science & Technology, 39(14), 5262–5267. https://doi.org/10.1021/es0502876

He, Y., Liu, Z., Xing, X. H., Li, B., Zhang, Y., Shen, R., Zhu, Z., & Duan, N. (2015). Carbon nanotubes simultaneously as the anode and microbial carrier for up-flow fixed-bed microbial fuel cell. Biochemical Engineering Journal, 94, 39–44. https://doi.org/10.1016/j.bej.2014.11.006

Ieropoulos, I., Greenman J., & Melhuish, C. (2008). Microbial fuel cells based on carbon veil electrodes: Stack configuration and scalability. International Journal of Energy Research, 32(13), 1228–1240. https://doi.org/10.1002/er.1419

Kim, H., Kim, B., & Yu, J. (2015). Power generation response to readily biodegradable COD in single-chamber microbial fuel cells. Bioresource Technology, 186, 136–140. https://doi.org/10.1016/j.biortech.2015.03.066

Klaisongkram, N., & Holasut, K. (2015). Electricity generation of plant microbial fuel cell (PMFC) using Cyperus involucratus R. Engineering and Applied Science Research, 42(1), 117–124. https://doi.org/10.14456/kkuenj.2015.2

Kumar, M., & Lin, J. G. (2010). Co-existence of anammox and denitrification for simultaneous nitrogen and carbon removal-Strategies and issues. Journal of Hazardous Materials, 178(1-3), 1–9. https://doi.org/10.1016/j.jhazmat.2010.01.077

Lie, E., & Welander, T. (1994). Influence of dissolved oxygen and oxidation-reduction potential on the denitrification rate of activated sludge. Water Science & Technology, 30(6), 91–100. https://doi.org/10.2166/wst.1994.0256

Logan, B. E. (2007). Microbial fuel cells, (2nd ed.). John Wiley & Sons.

Min, B., & Logan, B. E. (2004). Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environmental Science & Technology, 38(21), 5809–5814. https://doi.org/10.1021/es0491026

Molognoni, D., Puig, S., Balaguer, M. D., Capodaglio, A. G., Callegari, A., & Colprim, J. (2016). Multiparametric control for enhanced biofilm selection in microbial fuel cells. Journal of Chemical Technology & Biotechnology, 91(6), 1720–1727. https://doi.org/10.1002/jctb.4760

Mongkulphit, S., Pengchai, P., & Suwannata, N. (2021a). Influence of very high flow rates on performance of biofilter-microbial fuel cells. International Journal of Environmental Science and Development, 12(3), 69–74. https://doi.org/10.18178/ijesd.2021.12.3.1320

Mongkulphit, S., Siripratum, S., Chumroen, W., & Pengchai, P. (2021b). Roles of packed bed porosity on performance of biofilter microbial fuel cell in synthetic landfill leachate treatment. GMSARN International Journal, 15(4), 360–365.

Nor Faekah, I., Fatihah, S., & Mohamed, Z. S. (2020). Kinetic evaluation of a partially packed upflow anaerobic fixed film reactor treating low-strength synthetic rubber wastewater. Heliyon, 6(3), Article e03594. https://doi.org/10.1016/j.heliyon.2020.e03594

Pinto, R. P., Srinivasan, B., Guiot, S. R., & Tartakovsky, B. (2011). The effect of real-time external resistance optimization on microbial fuel cell performance. Water Research, 45(4), 1571–1578. https://doi.org/10.1016/j.watres.2010.11.033

Puig, S., Serra, M., Coma, M., Cabré, M., Balaguer, M. D., & Colprim, J. (2011). Microbial fuel cell application in landfill leachate treatment. Journal of Hazardous Materials, 185(2-3), 763–767. https://doi.org/10.1016/j.jhazmat.2010.09.086

Rajagopal, R., Torrijos, M., Kumar, P., & Mehrotra, I. (2013). Substrate removal kinetics in high-rate upflow anaerobic filters packed with low-density polyethylene media treating high-strength agro-food wastewaters. Journal of Environmental Management, 116, 101–106. https://doi.org/10.1016/j.jenvman.2012.11.032

Siripratuma, S., & Pengchai, P. (2022). Performance investigation of the reverse anoxic/anaerobic/oxic microbial fuel cell. Engineering Journal, 26(10), 11–25. https://doi.org/10.4186/ej.2022.26.10.11

Shehab, O., Deininger, R., Porta, F., & Wojewski, T. (1996). Optimizing phosphorus removal at the Ann Arbor wastewater treatment plant. Water Science & Technology, 34(1-2), 493–499. https://doi.org/10.1016/0273-1223(96)00548-3

Sonwani, R. K., Swain, G., Giri, B. S., Singh, R. S., & Rai, B. N. (2019). A novel comparative study of modified carriers in moving bed biofilm reactor for the treatment of wastewater: Process optimization and kinetic study. Bioresource Technology, 281, 335–342. https://doi.org/10.1016/j.biortech.2019.02.121

Sukkasem, C. (2011). Microbial fuel cell: Novel technology “convert wastewater to electricity”. Engineering and Applied Science Research, 38(3), 347–362.

Sun, G., Kang, K., Qiu, L., Guo, X., & Zhu, M. (2019). Electrochemical performance and microbial community analysis in air cathode microbial fuel cells fuelled with pyroligneous liquor. Bioelectrochemistry, 126, 12–19. https://doi.org/10.1016/j.bioelechem.2018.11.006

Swain, G., Singh, S., Sonwani, R. K., Singh, R. S., Jaiswal, R. P., & Rai, B. N. (2021). Removal of acid orange 7 dye in a packed bed bioreactor: Process optimization using response surface methodology and kinetic study. Bioresource Technology Reports, 13, Article 100620. https://doi.org/10.1016/j.biteb.2020.100620

Tamilarasan, K., Banu, J. R., Jayashree, C., Yogalakshmi, K. N., & Gokulakrishnan, K. (2017). Effect of organic loading rate on electricity generating potential of upflow anaerobic microbial fuel cell treating surgical cotton industry wastewater. Journal of Environmental Chemical Engineering, 5(1), 1021–1026. https://doi.org/10.1016/j.jece.2017.01.025

Tao, Q., Luo, J., Zhou, J., Zhou, S., Liu, G., & Zhang, R. (2014). Effect of dissolved oxygen on nitrogen and phosphorus removal and electricity production in microbial fuel cell. Bioresource Technology, 164, 402–407. https://doi.org/10.1016/j.biortech.2014.05.002

Vazquez-Larios, A. L., Poggi-Varaldo, H. M., Solorza-Feria, O., & Rinderknecht-Seijas, N. (2015). Effect of type of inoculum on microbial fuel cell performance that used RuxMoySez as cathodic catalyst. International Journal of Hydrogen Energy, 40(48), 17402–17412. https://doi.org/10.1016/j.ijhydene.2015.09.143

Yanuka-Golub, K., Reshef, L., Rishpon, J., & Gophna, U. (2016). Community structure dynamics during startup in microbial fuel cells - The effect of phosphate concentrations. Bioresource Technology, 212, 151–159. https://doi.org/10.1016/j.biortech.2016.04.016

Ye, Y., Ngo, H. H., Guo, W., Chang, S. W., Nguyen, D. D., Liu, Y., Nghiem, L. D., Zhang, X., & Wang, J. (2019). Effect of organic loading rate on the recovery of nutrients and energy in a dual-chamber microbial fuel cell. Bioresource Technology, 281(18), 367–373. https://doi.org/10.1016/j.biortech.2019.02.108

You, Q. G., Wang, J. H., Qi, G. X., Zhou, Y. M., Guo, Z. W., Shen, Y., & Gao, X. (2020). Anammox and partial denitrification coupling: A review. RSC Advances, 10(21), 12554–12572. https://doi.org/10.1039/D0RA00001A

You, S. J., Zhao, Q. L., Jiang, J. Q., Zhang, J. N., & Zhao, S. Q. (2006). Sustainable approach for leachate treatment: Electricity generation in microbial fuel cell. Journal of Environmental Science and Health, 41(12), 2721–2734. https://doi.org/10.1080/10934520600966284

Zhang, X., He, W., Ren, L., Stager, J., Evans, P. J., & Logan, B. E. (2015). COD removal characteristics in air-cathode microbial fuel cells. Bioresource Technology, 176, 23–31. https://doi.org/10.1016/j.biortech.2014.11.001

Zhao, Y., Ma, Y., Li, T., Bo, X., Wang, J., Li, P., Zhong, L., & Sun, Y. (2014). Treatment of sewage and synchronous electricity generation characteristics by microbial fuel cell. Journal of Fuel Chemistry and Technology, 42(4), 481–486. https://doi.org/10.1016/S1872-5813(14)60024-4.