Comparison of fish skins as alternative biological skin models for skin permeability study

Main Article Content

Kritsanaporn Tansathien
Praneet Opanasopit
Prasopchai Patrojanasophon
Mont Kumpugdee-Vollrath

Abstract

Animal skins are generally used instead of human skin to evaluate drug percutaneous permeation due to ethical and practical reasons. This study aimed to investigate the feasibility of using fish skins, including trout (Salmo trutta), Norwegian salmon (Salmo salar), BIO salmon (Salmo salar), and bighead catfish (Clarias macrocephalus) as alternatives. Caffeine was selected as a model drug. The Franz-diffusion apparatus was used for in vitro skin permeation test, evaluating parameters such as cumulative permeation profile, permeation flux, permeation coefficient, and lag-time. Skin composition was determined using Fourier-transform infrared spectroscopy. The results revealed that bighead catfish skin exhibited the highest cumulative caffeine permeation, while Norwegian salmon skin closely matched the skin permeability parameters of Strat-M®. Based on the permeability parameters and barrier compositions, Norwegian salmon skin demonstrated characteristics similar to Strat-M®.

Downloads

Download data is not yet available.

Article Details

How to Cite
Tansathien, K., Opanasopit, P., Patrojanasophon, P., & Kumpugdee-Vollrath, M. (2023). Comparison of fish skins as alternative biological skin models for skin permeability study . Science, Engineering and Health Studies, 17, 23050016. Retrieved from https://li01.tci-thaijo.org/index.php/sehs/article/view/259788
Section
Health sciences

References

Abd, E., Yousef, S. A., Pastore, M. N., Telaprolu, K., Mohammed, Y. H., Namjoshi, S., Grice, J. E., and Roberts, M. S. (2016). Skin models for the testing of transdermal drugs. Clinical Pharmacology: Advances and Applications, 8, 163–176.

Amos-Tautua, B., Martin, W., and Ere, D. (2014). Ultra-violet spectrophotometric determination of caffeine in soft and energy drinks available in Yenagoa, Nigeria. Advance Journal of Food Science and Technology, 6(2), 155–158.

Arce, F. J., Asano, N., See, G. L., Itakura, S., Todo, H., and Sugibayashi, K. (2020). Usefulness of artificial membrane, Strat-M®, in the assessment of drug permeation from complex vehicles in finite dose conditions. Pharmaceutics, 12(2), 173.

Barry, B. W., Edwards, H. G. M., and Williams, A. C. (1992). Fourier transform Raman and infrared vibrational study of human skin: Assignment of spectral bands. Journal of Raman Spectroscopy, 23(11), 641–645.

Bhattacharya, N., Sato, W. J., Kelly, A., Ganguli-Indra, G., and Indra, A. K. (2019). Epidermal lipids: key mediators of atopic dermatitis pathogenesis. Trends in Molecular Medicine, 25(6), 551–562.

Bouwstra, J. A., Helder, R. W. J., and El Ghalbzouri, A. (2021). Human skin equivalents: Impaired barrier function in relation to the lipid and protein properties of the stratum corneum. Advanced Drug Delivery Reviews, 175, 113802.

Das, M. P., R., S. P., Prasad, K., J. V., V., and M, R. (2017). Extraction and characterization of gelatin: a functional biopolymer. International Journal of Pharmacy and Pharmaceutical Sciences, 9(9), 239–242.

Dash, S., Das, S. K., Samal, J., and Thatoi, H. N. (2018). Epidermal mucus, a major determinant in fish health: A review. Iranian Journal of Veterinary Research, 19(2), 72–81.

Dobrinas, S., Soceanu, A., Popescu, V., Stanciu, G., and Smalberger, S. A. (2013). Optimization of a UV-VIS spectrometric method for caffeine analysis in tea, coffee and other beverages. Scientific Study & Research: Chemistry & Chemical Engineering, Biotechnology, Food Industry, 14(2), 071–078.

Drelich, A. J., Monteiro, S. N., Brookins, J., and Drelich, J. W. (2018). Fish skin: A natural inspiration for innovation. Advanced Biosystems, 2(7), 1800055.

Dusch, M., Schley, M., Obreja, O., Forsch, E., Schmelz, M., and Rukwied, R. (2009). Comparison of electrically induced flare response patterns in human and pig skin. Inflammation Research, 58(10), 639–648.

Elliott, D. G. (2011). The skin: Functional morphology of the integumentary system in fishes. In Encyclopedia of Fish Physiology (P. F. Anthony, Ed.), (pp. 476–488). Cambridge, MA: Academic Press.

Gorcea, M., Hadgraft, J., Moore, D. J., and Lane, M. E. (2012). Fourier transform infrared spectroscopy studies of lipid domain formation in normal and ceramide deficient stratum corneum lipid models. International Journal of Pharmaceutics, 435(1), 63–68.

Kantarcı, G., Özgüney, I., Karasulu, H. Y., Güneri, T., and Başdemir, G. (2005). In vitro permeation of diclofenac sodium from novel microemulsion formulations through rabbit skin. Drug Development Research, 65(1), 17–25.

Konrádsdóttir, F., Loftsson, T., and Sigfússon, S. D. (2010). Fish skin as a model membrane: Structure and characteristics. Journal of Pharmacy and Pharmacology, 61(1), 121–124.

Kumpugdee-Vollrath, M., Phu, T. G. D., and Helmis, M. (2015). Effect of different model drugs on the properties of model membranes from fishes. World Academy of Science, Engineering, and Technology International Journal of Animal and Veterinary Sciences, 9(7), 855–859.

Laugel, C., Yagoubi, N., and Baillet, A. (2005). ATR-FTIR spectroscopy: A chemometric approach for studying the lipid organisation of the stratum corneum. Chemistry and Physics of Lipids, 135(1), 55–68.

Másson, M., Sigfússon, S. D., and Loftsson, T. (2002). Fish skin as a model membrane to study transmembrane drug delivery with cyclodextrins. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 44(1), 177–182.

Mendelsohn, R., Flach, C. R., and Moore, D. J. (2006). Determination of molecular conformation and permeation in skin via IR spectroscopy, microscopy, and imaging. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1758(7), 923–933.

Menon, G. K., Cleary, G. W., and Lane, M. E. (2012). The structure and function of the stratum corneum. International Journal of Pharmaceutics, 435(1), 3–9.

Moore, D. J., and Rerek, M. E. (2000). Insights into the molecular organization of lipids in the skin barrier from infrared spectroscopy studies of stratum corneum lipid models. Acta Dermato-Venereologica, 80(208 Suppl.), 16–22.

Özgüney, I. S., Karasulu, H. Y., Kantarci, G., Sözer, S., Güneri, T., and Ertan, G. (2006). Transdermal delivery of diclofenac sodium through rat skin from various formulations. Journal of the American Association of Pharmaceutical Scientists, 7(4), E39–E45.

Nemes, Z., and Steinert, P. M. (1999). Bricks and mortar of the epidermal barrier. Experimental & Molecular Medicine, 31(1), 5–19.

Neupane, R., Boddu, S. H. S., Renukuntla, J., Babu, R. J., and Tiwari, A. K. (2020). Alternatives to biological skin in permeation studies: Current trends and possibilities. Pharmaceutics, 12(2), 152.

Pensack, R. D., Michniak, B. B., Moore, D. J., and Mendelsohn, R. (2006). Infrared kinetic/structural studies of barrier reformation in intact stratum corneum following thermal perturbation. Applied Spectroscopy, 60(12), 1399–1404.

Ponec, M., Weerheim, A., Lankhorst, P., and Wertz, P. (2003). New acylceramide in native and reconstructed epidermis. Journal of Investigative Dermatology, 120(4), 581–588.

Proykova, A., Samaras, T., Ion, R.-M., Bruzell, E. M., Doré, J.-F., Nicolo, M., O'Hagan, J., Sánchez-Ramos, C., and van Kerkhof, L. (2018). Potential Risks to Human Health of LEDs (Final Opinion), Luxembourg: European Commission, pp. 1–92.

Rakers, S., Gebert, M., Uppalapati, S., Meyer, W., Maderson, P., Sell, A. F., Kruse, C., and Paus, R. (2010). ‘Fish matters’: The relevance of fish skin biology to investigative dermatology. Experimental Dermatology, 19(4), 313–324.

Ramadon, D., McCrudden, M. T. C., Courtenay, A. J., and Donnelly, R. F. (2022). Enhancement strategies for transdermal drug delivery systems: current trends and applications. Drug Delivery and Translational Research, 12(4), 758–791.

Sviridov, A. P., Zimnyakov, D. A., Sinichkin, Y. P., Butvina, L. N., Omelchenko, A. J., Shakh, G. S., and Bagratashvili, V. N. (2004). Attenuated total reflection Fourier transform infrared and polarization spectroscopy of in vivo human skin ablated, layer by layer, by erbium:YAG laser. Journal of Biomedical Optics, 9(4), 820–827.

Supe, S., and Takudage, P. (2021). Methods for evaluating penetration of drug into the skin: A review. Skin Research and Technology, 27(3), 299–308.

Todo, H. (2017). Transdermal permeation of drugs in various animal species. Pharmaceutics, 9(3), 33.

Veryser, L., Boonen, J., Mehuys, E., Roche, N., Remon, J.-P., Peremans, K., Burvenich, C., and De Spiegeleer, B. (2013). Transdermal evaluation of caffeine in differentformulations and excipients. Journal of Caffeine Research, 3(1), 41–46.

Vuong, Q., and Roach, P. D. (2014). Caffeine in green tea: Its removal and isolation. Separation and Purification Reviews, 43(2), 155–174.

Wagner, H., Kostka, K.-H., Lehr, C.-M., and Schaefer, U. F. (2001). Interrelation of permeation and penetration parameters obtained from in vitro experiments with human skin and skin equivalents. Journal of Controlled Release, 75(3), 283–295.

Yokota, J., and Kyotani, S. (2018). Influence of nanoparticle size on the skin penetration, skin retention and anti-inflammatory activity of non-steroidal anti-inflammatory drugs. Journal of the Chinese Medical Association, 81(6), 511–519.

Zhong, J., Tang, N., Asadzadeh, B., and Yan, W. (2017). Measurement and correlation of solubility of theobromine, theophylline, and caffeine in water and organic solvents at various temperatures. Journal of Chemical & Engineering Data, 62(9), 2570–2577.