Progress and opportunities in gellan gum and collagen as wound healing materials: A review

Main Article Content

Aznatul Jannah binti Abu Bakar
Khairul Anuar Mat Amin

Abstract

Gellan gum and collagen are two biomaterials that have been extensively studied for their potential use in wound healing and tissue engineering applications. Gellan gum is a biologically inert natural polymer that is increasingly favored as a biomaterial to form hydrogels. Collagen, on the other hand, is a major component of the extracellular matrix and is widely used in tissue engineering applications due to its biocompatibility and ability to promote cell adhesion and proliferation.  In this review, the recent research will be discussed related to gellan gum and collagen, their properties, and their potential applications in wound healing and tissue engineering.

Downloads

Article Details

How to Cite
Abu Bakar, A. J. binti, & Mat Amin, K. A. (2024). Progress and opportunities in gellan gum and collagen as wound healing materials: A review. Science, Engineering and Health Studies, 18, 24010004. https://doi.org/10.69598/sehs.18.24010004
Section
Editorials and Reviews

References

Abu Bakar, A. J., and Mat Amin, K. A. (2021). Swelling behaviour and water vapour transmission rates of gellan gum/collagen film containing gatifloxacin as dressing materials. Materials Science Forum, 1041, 75–79.

Ahmad, F., Mushtaq, B., Butt, F. A., Rasheed, A., and Ahmad, S. (2021). Preparation and characterization of wool fiber reinforced nonwoven alginate hydrogel for wound dressing. Cellulose, 28, 7941–7951.

Alheib, O., da Silva, L. P., da Silva Morais, A., Mesquita, K. A., Pirraco, R. P., Reis, R. L., and Correlo, V. M. (2022). Injectable laminin-biofunctionalized gellan gum hydrogels loaded with myoblasts for skeletal muscle regeneration. Acta Biomaterialia, 143, 282–294.

Almeida, F. S., and Sato, A. C. K. (2019). Structure of gellan gum–hydrolyzed collagen particles: Effect of starch addition and coating layer. Food Research International, 121, 394–403.

Ambekar, R. S., and Kandasubramanian, B. (2019). Advancements in nanofibers for wound dressing: A review. European Polymer Journal, 117, 304–336.

Ambrogi, V., Pietrella, D., Nocchetti, M., Casagrande, S., Moretti, V., De Marco, S., and Ricci, M. (2017). Montmorillonite–chitosan–chlorhexidine composite films with antibiofilm activity and improved cytotoxicity for wound dressing. Journal of Colloid and Interface Science, 491, 265–272.

Amin, K. A. M., and In Het Panhuis, M. (2011). Polyelectrolyte complex materials from chitosan and gellan gum. Carbohydrate Polymers, 86(1), 352–358.

Andonegi, M., Heras, L. K., Santos-Vizcaíno, E., Igartua, M., Hernandez, R. M., de la Caba, K., and Guerrero, P. (2020). Structure-properties relationship of chitosan/collagen films with potential for biomedical applications. Carbohydrate Polymers, 237, 116159.

Avila Rodríguez, M. I., Rodríguez Barroso, L. G., and Sánchez, M. L. (2018). Collagen: A review on its sources and potential cosmetic applications. Journal of Cosmetic Dermatology, 17(1), 20–26.

Azam, N. A. N. M., and Amin, K. A. M. (2017). The physical and mechanical properties of gellan gum films incorporated manuka honey as wound dressing materials. IOP Conference Series: Materials Science and Engineering, 209(1), 012027.

Azam, N. S. M., Sevakumaran, V., Razali, M. H., Razak, S. I. B. A., and Amin, K. A. M. (2023). Effectiveness of collagen and gatifloxacin in improving the healing and antibacterial activities of gellan gum hydrogel films as dressing materials. International Journal of Biological Macromolecules, 245, 125494.

Barbu, A., Neamtu, B., Zăhan, M., Iancu, G. M., Bacila, C., and Mireșan, V. (2021). Current trends in advanced alginate-based wound dressings for chronic wounds. Journal of Personalized Medicine, 11(9), 890.

Behera, S. S., Das, U., Kumar, A., Bissoyi, A., and Singh, A. K. (2017). Chitosan/TiO2 composite membrane improves proliferation and survival of L929 fibroblast cells: Application in wound dressing and skin regeneration. International Journal of Biological Macromolecules, 98, 329–340.

Berti, F. V., Srisuk, P., da Silva, L. P., Marques, A. P., Reis, R. L., and Correlo, V. M. (2017). Synthesis and characterization of electroactive gellan gum spongy-like hydrogels for skeletal muscle tissue engineering applications. Tissue Engineering Part A, 23(17–18), 968–979.

Biranje, S. S., Madiwale, P. V, Patankar, K. C., Chhabra, R., Bangde, P., Dandekar, P., and Adivarekar, R. V. (2020). Cytotoxicity and hemostatic activity of chitosan/carrageenan composite wound healing dressing for traumatic hemorrhage. Carbohydrate Polymers, 239, 116106.

Boateng, J. S., Matthews, K. H., Stevens, H. N. E., and Eccleston, G. M. (2008). Wound healing dressings and drug delivery systems: A review. Journal of Pharmaceutical Sciences, 97(8), 2892–2923.

Bonifacio, M. A., Cochis, A., Cometa, S., Scalzone, A., Gentile, P., Procino, G., Milano, S., Scalia, A. C., Rimondini, L., and De Giglio, E. (2020). Advances in cartilage repair: The influence of inorganic clays to improve mechanical and healing properties of antibacterial gellan gum-manuka honey hydrogels. Materials Science and Engineering C, 108, 110444.

Bosworth, L. A., and Downes, S. (2011). Electrospinning for Tissue Regeneration. Cambridge, UK: Woodhead Publishing, p. 432.

Cao, C., Xiao, Z., Ge, C., and Wu, Y. (2022). Animal by-products collagen and derived peptide, as important components of innovative sustainable food systems—a comprehensive review. Critical Reviews in Food Science and Nutrition, 62(31), 8703–8727.

Cernencu, A. I., and Ioniță, M. (2023). The current state of the art in gellan-based printing inks in tissue engineering. Carbohydrate Polymers, 120676.

Chandika, P., Kim, M.-S., Khan, F., Kim, Y.-M., Heo, S.-Y., Oh, G.-W., Kim, N. G., and Jung, W.-K. (2021). Wound healing properties of triple cross-linked poly (vinyl alcohol)/methacrylate kappa-carrageenan/ chitooligosaccharide hydrogel. Carbohydrate Polymers, 269, 118272.

Chattopadhyay, S., and Raines, R. T. (2014). Collagen‐based biomaterials for wound healing. Biopolymers, 101(8), 821–833.

Chen, H., Zhang, Y., Ding, P., Zhang, T., Zan, Y., Ni, T., Lin, R., Liu, M., and Pei, R. (2018). Bone marrow-derived mesenchymal stem cells encapsulated in functionalized Gellan gum/collagen hydrogel for effective vascularization. ACS Applied Bio Materials, 1(5), 1408–1415.

Chew, Y.-L. (2019). The beneficial properties of virgin coconut oil in management of atopic dermatitis. Pharmacognosy Reviews, 13(25), 24.

Cho, H. H., Choi, J. H., Been, S. Y., Kim, N., Choi, J. M., Kim, W., Kim, D., Jung, J. J., Song, J. E., and Khang, G. (2020). Development of fluorescein isothiocyanate conjugated gellan gum for application of bioimaging for biomedical application. International Journal of Biological Macromolecules, 164, 2804–2812.

Danalache, F., Beirão-da-Costa, S., Mata, P., Alves, V. D., and Moldao-Martins, M. (2015). Texture, microstructure and consumer preference of mango bars jellified with gellan gum. LWT-Food Science and Technology, 62(1), 584–591.

De Melo Oliveira, V., Assis, C. R. D., Costa, B. de A. M., de Araújo Neri, R. C., Monte, F. T. D., da Costa Vasconcelos, H. M. S., França, R. C. P., Santos, J. F., de Souza Bezerra, R., and Porto, A. L. F. (2021). Physical, biochemical, densitometric and spectroscopic techniques for characterization collagen from alternative sources: A review based on the sustainable valorization of aquatic by-products. Journal of Molecular Structure, 1224, 129023.

Destruel, P. L., Zeng, N., Seguin, J., Douat, S., Rosa, F., Brignole-Baudouin, F., Dufaÿ, S., Dufaÿ-Wojcicki, A., Maury, M., Mignet, N., and Boudy, V. (2020). Novel in situ gelling ophthalmic drug delivery system based on gellan gum and hydroxyethylcellulose: Innovative rheological characterization, in vitro and in vivo evidence of a sustained precorneal retention time. International Journal of Pharmaceutics, 574, 118734.

Dewan, M., Sarkar, G., Bhowmik, M., Das, B., Chattoapadhyay, A. K., Rana, D., and Chattopadhyay, D. (2017). Effect of gellan gum on the thermogelation property and drug release profile of Poloxamer 407 based ophthalmic formulation. International Journal of Biological Macromolecules, 102, 258–265.

Dhivya, S., Padma, V. V., and Santhini, E. (2015). Wound dressings - a review. BioMedicine, 5(4), 24–28.

Eaglstein, W. H. (2001). Moist wound healing with occlusive dressings: A clinical focus. Dermatologic Surgery, 27(2), 175–182.

Fahmy, H. M., Aly, A. A., Sayed, S. M., and Abou‐Okeil, A. (2021). К‐carrageenan/Na‐alginate wound dressing with sustainable drug delivery properties. Polymers for Advanced Technologies, 32(4), 1793–1801.

Gao, Y., Liu, Q., Kong, W., Wang, J., He, L., Guo, L., Lin, H., Fan, H., Fan, Y., and Zhang, X. (2020). Activated hyaluronic acid/collagen composite hydrogel with tunable physical properties and improved biological properties. International Journal of Biological Macromolecules, 164, 2186–2196.

Gao, Y., Zhang, X., and Jin, X. (2019). Preparation and properties of minocycline-loaded carboxymethyl chitosan gel/alginate nonwovens composite wound dressings. Marine Drugs, 17(10), 575.

Gering, C., Rasheed, A., Koivisto, J. T., Párraga, J., Tuukkanen, S., and Kellomäki, M. (2021). Chemical modification strategies for viscosity-dependent processing of gellan gum. Carbohydrate Polymers, 269, 118335.

Grabska-Zielińska, S., Sionkowska, A., Reczyńska, K., and Pamuła, E. (2020). Physico-chemical characterization and biological tests of collagen/silk fibroin/chitosan scaffolds cross-linked by dialdehyde starch. Polymers, 12(2), 372.

Grässel, S., and Bauer, R. J. (2012). COL16A1 (collagen, type XVI, alpha 1). Atlas of Genetics and Cytogenetics in Oncology and Haematology, 14(7), 679–687.

Hishamuddin, N. I., Razali, M. H., and Mat Amin, K. A. (2022). Application of gellan gum biopolymer in biomedical applications: A review. Makara Journal of Science, 26(1), 2.

Hissae Yassue-Cordeiro, P., Henrique Zandonai, C., Pereira Genesi, B., Santos Lopes, P., Sanchez-Lopez, E., Luisa Garcia, M., Regina Camargo Fernandes-Machado, N., Severino, P., B. Souto, E., and Ferreira da Silva, C. (2019). Development of chitosan/silver sulfadiazine/zeolite composite films for wound dressing. Pharmaceutics, 11(10), 535.

Ho-Shui-Ling, A., Bolander, J., Rustom, L. E., Johnson, A. W., Luyten, F. P., and Picart, C. (2018). Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials, 180, 143–162.

Ibrahim, A. H., Li, H., Al-Rawi, S. S., Majid, A. S. A., Al-Habib, O. A. M., Xia, X., Majid, A. M. S. A., and Ji, D. (2017). Angiogenic and wound healing potency of fermented virgin coconut oil: In vitro and in vivo studies. American Journal of Translational Research, 9(11), 4936–4944.

Irawan, V., Sung, T.-C., Higuchi, A., and Ikoma, T. (2018). Collagen scaffolds in cartilage tissue engineering and relevant approaches for future development. Tissue Engineering and Regenerative Medicine, 15, 673–697.

Ismail, N. A., Amin, K. A. M., Majid, F. A. A., and Razali, M. H. (2019). Gellan gum incorporating titanium dioxide nanoparticles biofilm as wound dressing: Physicochemical, mechanical, antibacterial properties and wound healing studies. Materials Science and Engineering: C, 103, 109770.

Ismail, N. A., Mohamad, S. F., Ibrahim, M. A., and Mat Amin, K. A. (2014). Evaluation of gellan gum film containing virgin coconut oil for transparent dressing materials. Advances in Biomaterials, 2014(1), 351248.

Jana, P., Mitra, T., Selvaraj, T. K. R., Gnanamani, A., and Kundu, P. P. (2016). Preparation of guar gum scaffold film grafted with ethylenediamine and fish scale collagen, cross-linked with ceftazidime for wound healing application. Carbohydrate Polymers, 153, 573–581.

Jana, S., Pramanik, R., Nayak, A. K., and Sen, K. K. (2022). Gellan gum (GG)-based IPN microbeads for sustained drug release. Journal of Drug Delivery Science and Technology, 69, 103034.

Jung, S., Oh, H.-K., Kim, M.-S., Lee, K.-Y., Park, H., and Kook, M.-S. (2020). Effect of gellan gum/tuna skin film in guided bone regeneration in artificial bone defect in rabbit calvaria. Materials (Basel), 13(6), 1318.

Kasmi, F. A., Zailani, M. A., Abu Bakar, A. J., and Mat Amin, K. A. (2020). Kinetic release of acetaminophen from cross-linked carrageenan hydrogel for wound dressing application. Journal of Pure and Applied Microbiology, 14(1), 271–278.

Kim, D., Cho, H. H., Thangavelu, M., Song, C., Kim, H. S., Choi, M. J., Song, J. E., and Khang, G. (2020). Osteochondral and bone tissue engineering scaffold prepared from Gallus var domesticus derived demineralized bone powder combined with gellan gum for medical application. International Journal of Biological Macromolecules, 149, 381–394.

Kim, D., Thangavelu, M., Cheolui, S., Kim, H. S., Choi, M. J., Song, J. E., and Khang, G. (2019). Effect of different concentration of demineralized bone powder with gellan gum porous scaffold for the application of bone tissue regeneration. International Journal of Biological Macromolecules, 134, 749–758.

Kim, J., Lee, C.-M., Moon, S.-Y., Jeong, Y.-I., Kim, C. S., and Lee, S.-Y. (2022). Biomedical membrane of fish collagen/gellan gum containing bone graft materials. Materials, 15(8), 2954.

Kim, W., Choi, J. H., Kim, P., Youn, J., Song, J. E., Motta, A., Migliaresi, C., and Khang, G. (2021). Preparation and evaluation of gellan gum hydrogel reinforced with silk fibers with enhanced mechanical and biological properties for cartilage tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 15(11), 936–947.

Kim, Y., Doh, S. J., Lee, G. D., Kim, C., and Im, J. N. (2019). Composite nonwovens based on carboxymethyl cellulose for wound dressing materials. Fibers and Polymers, 20, 2048–2056.

Kozlowska, J., Prus-Walendziak, W., Stachowiak, N., Bajek, A., Kazmierski, L., and Tylkowski, B. (2020). Modification of collagen/gelatin/hydroxyethyl cellulose-based materials by addition of herbal extract-loaded microspheres made from gellan gum and xanthan gum. Materials, 13(16), 3507.

Lameirinhas, N. S., Teixeira, M. C., Carvalho, J. P. F., Valente, B. F. A., Pinto, R. J. B., Oliveira, H., Luís, J. L., Pires, L., Oliveira, J. M., Vilela, C., and Freire, C. S. R. (2023). Nanofibrillated cellulose/gellan gum hydrogel-based bioinks for 3D bioprinting of skin cells. International Journal of Biological Macromolecules, 229, 849–860.

Lee, S., Choi, J., Youn, J., Lee, Y., Kim, W., Choe, S., Song, J., Reis, R. L., and Khang, G. (2021). Development and evaluation of gellan gum/silk fibroin/chondroitin sulfate ternary injectable hydrogel for cartilage tissue engineering. Biomolecules, 11(8), 1184.

Li, S., Li, L., Guo, C., Qin, H., and Yu, X. (2017). A promising wound dressing material with excellent cytocompatibility and proangiogenesis action for wound healing: Strontium loaded silk fibroin/sodium alginate (SF/SA) blend films. International Journal of Biological Macromolecules, 104, 969–978.

Li, W., Jian, X., Zou, Y., Wu, L., Huang, H., Li, H., Hu, D., and Yu, B. (2021). The fabrication of a gellan gum-based hydrogel loaded with magnesium ions for the synergistic promotion of skin wound healing. Frontiers in Bioengineering and Biotechnology, 9, 709679.

Li, X., Han, J., Zhao, Y., Ding, W., Wei, J., Han, S., Shang, X., Wang, B., Chen, B., and Xiao, Z. (2015). Functionalized collagen scaffold neutralizing the myelin-inhibitory molecules promoted neurites outgrowth in vitro and facilitated spinal cord regeneration in vivo. ACS Applied Materials and Interfaces, 7(25), 13960–13971.

Li, X. X., Dong, J. Y., Li, Y. H., Zhong, J., Yu, H., Yu, Q. Q., and Lei, M. (2020). Fabrication of Ag–ZnO@ carboxymethyl cellulose/K-carrageenan/grapheneoxide/konjacglucomannanhydrogel for effective wound dressing in nursing care for diabetic foot ulcers. Applied Nanoscience, 10(3), 729–738.

Lu, Z., Gao, J., He, Q., Wu, J., Liang, D., Yang, H., and Chen, R. (2017). Enhanced antibacterial and wound healing activities of microporous chitosan-Ag/ZnO composite dressing. Carbohydrate Polymers, 156, 460–469.

Ma, R., Wang, Y., Qi, H., Shi, C., Wei, G., Xiao, L., Huang, Z., Liu, S., Yu, H., Teng, C., Liu, H., Murugadoss, V., Zhang, J., Wang, Y., and Guo, Z. (2019). Nanocomposite sponges of sodium alginate/graphene oxide/polyvinyl alcohol as potential wound dressing: In vitro and in vivo evaluation. Composites Part B: Engineering, 167, 396–405.

Madni, A., Khalid, A., Wahid, F., Ayub, H., Khan, R., and Kousar, R. (2021). Preparation and applications of guar gum composites in biomedical, pharmaceutical, food, and cosmetics industries. Current Nanoscience, 17(3), 365–379.

Mahdi, M. H., Conway, B. R., and Smith, A. M. (2015). Development of mucoadhesive sprayable gellan gum fluid gels. International Journal of Pharmaceutics, 488(1–2), 12–19.

Mahmood, H., Khan, I. U., Asif, M., Khan, R. U., Asghar, S., Khalid, I., Khalid, S. H., Irfan, M., Rehman, F., Shahzad, Y., Yousaf, A. M., Younus, A., Niazi, Z. R., and Asim, M. (2021). In vitro and in vivo evaluation of gellan gum hydrogel films: Assessing the co impact of therapeutic oils and ofloxacin on wound healing. International Journal of Biological Macromolecules, 166, 483–495.

Manda, M. G., da Silva, L. P., Cerqueira, M. T., Pereira, D. R., Oliveira, M. B., Mano, J. F., Marques, A. P., Oliveira, J. M., Correlo, V. M., and Reis, R. L. (2018). Gellan gum‐hydroxyapatite composite spongy‐like hydrogels for bone tissue engineering. Journal of Biomedical Materials Research Part A, 106(2), 479–490.

Marangoni, L. J., Rodrigues, P. R., da Silva, R. G., Vieira, R. P., and Alves, R. M. V. (2021). Sustainable packaging films composed of sodium alginate and hydrolyzed collagen: Preparation and characterization. Food and Bioprocess Technology, 14(12), 2336–2346.

Mariod, A. A., and Adam, H. F. (2013). Review: Gelatin, source, extraction and industrial applications. Acta Scientiarum Polonorum, Technologia Alimentaria, 12(2), 135–147.

Martinez, M. G., Bullock, A. J., MacNeil, S., and Rehman, I. U. (2019). Characterisation of structural changes in collagen with Raman spectroscopy. Applied Spectroscopy Reviews, 54(6), 509–542.

Mat Amin, K. A. , Gilmore, K. J., Matic, J., Poon, S., Walker, M. J., Wilson, M. R., and In het Panhuis, M. (2012). Polyelectrolyte complex materials consisting of antibacterial and cell‐supporting layers. Macromolecular Bioscience, 12(3), 374–382.

Milivojevic, M., Pajic-Lijakovic, I., Bugarski, B., Nayak, A. K., and Hasnain, M. S. (2019). Gellan gum in drug delivery applications. Natural Polysaccharides in Drug Delivery and Biomedical Applications, 145–186.

Mishra, P., Gupta, P., and Pruthi, V. (2021). Cinnamaldehyde incorporated gellan/PVA electrospun nanofibers for eradicating Candida biofilm. Materials Science and Engineering: C, 119, 111450.

Mohd Azam, N. A. N., and Amin, K. A. M. (2017). The physical and mechanical properties of gellan gum films incorporated manuka honey as wound dressing materials. IOP Conference Series: Materials Science and Engineering, 209(1), 012027.

Mohd, S. S., Abdullah, M. A. A., and Mat Amin, K. A. (2016). Gellan gum/clay hydrogels for tissue engineering application: Mechanical, thermal behavior, cell viability, and antibacterial properties. Journal of Bioactive and Compatible Polymers, 31(6), 648–666.

Morris, E. R., Nishinari, K., and Rinaudo, M. (2012). Gelation of gellan–a review. Food Hydrocolloids, 28(2), 373–411.

Muktar, M. Z., Bakar, M. A. A., Amin, K. A. M., Che Rose, L., Wan Ismail, W. I., Razali, M. H., Abd Razak, S. I., and In het Panhuis, M. (2021). Gellan gum hydrogels filled edible oil microemulsion for biomedical materials: Phase diagram, mechanical behavior, and in vivo studies. Polymers, 13(19), 3281.

Muktar, M. Z., Ismail, W. I. W., Razak, S. I. A., Razali, M. H., and Amin, K. A. M. (2018). Accelerated wound healing of physically cross linked gellan gum-virgin coconut oil hydrogel containing manuka honey. ASM Science Journal, 2018(Special Issue 1), 166–182.

Nabilah, N. N., Badri, K. H., and Mat Amin, K. A. (2016). Palm kernel oil-based polyester polyurethane composites incorporated with multi-walled carbon nanotubes for biomedical application. Bioresources and Bioprocessing, 3, 25.

Nag, A., Han, K. S., and Singh, H. (2011). Microencapsulation of probiotic bacteria using pH-induced gelation of sodium caseinate and gellan gum. International Dairy Journal, 21(4), 247–253.

Nayak, A. K., Pal, D., and Santra, K. (2014). Tamarind seed polysaccharide–gellan mucoadhesive beads for controlled release of metformin HCl. Carbohydrate Polymers, 103, 154–163.

Ng, J. Y., Tan, K. Y. F., and Ee, P. L. R. (2022). Sugar-assisted cryopreservation of stem cell-laden gellan gum–collagen interpenetrating network hydrogels. Biomacromolecules, 23(7), 2803–2813.

Ng, J. Y., Yu, P., Murali, D. M., Liu, Y.-S., Gokhale, R., and Ee, P. L. R. (2023). The influence of pregelatinized starch on the rheology of a gellan gum-collagen IPN hydrogel for 3D bioprinting. Chemical Engineering Research and Design, 192, 477–486.

Ng, J. Y., Zhu, X., Mukherjee, D., Zhang, C., Hong, S., Kumar, Y., Gokhale, R., and Ee, P. L. R. (2021). Pristine gellan gum–collagen interpenetrating network hydrogels as mechanically enhanced anti-inflammatory biologic wound dressings for burn wound therapy. ACS Applied Bio Materials, 4(2), 1470–1482.

Nitbani, F. O., Tjitda, P. J. P., Nitti, F., Jumina, J., and Detha, A. I. R. (2022). Antimicrobial properties of lauric acid and monolaurin in virgin coconut oil: A review. ChemBioEng Reviews, 9(5), 442–461.

Norazemi, N. F., Rose, L. C., Amin, K. A. M., Suhaimi, H., and Yee, C. S. (2017). Coated gellan gum hydrogel as a drug carrier for colon targeted drug delivery. Journal of Sustainability Science and Management, 2017(Special Issue 2), 36–41.

Norton, A. B., Cox, P. W., and Spyropoulos, F. (2011). Acid gelation of low acyl gellan gum relevant to self-structuring in the human stomach. Food Hydrocolloids, 25(5), 1105–1111.

Oh, G. W., Nam, S. Y., Heo, S. J., Kang, D. H., and Jung, W. K. (2020). Characterization of ionic cross-linked composite foams with different blend ratios of alginate/pectin on the synergistic effects for wound dressing application. International Journal of Biological Macromolecules, 156, 1565–1573.

Oliveira Cardoso, V. M. de, Stringhetti Ferreira Cury, B., Evangelista, R. C., and Daflon Gremião, M. P. (2017). Development and characterization of cross-linked gellan gum and retrograded starch blend hydrogels for drug delivery applications. Journal of the Mechanical Behavior of Biomedical Materials, 65, 317–333.

Oliveira, J. T., Martins, L., Picciochi, R., Malafaya, P. B., Sousa, R. A., Neves, N. M., Mano, J. F., and Reis, R. L. (2010). Gellan gum: A new biomaterial for cartilage tissue engineering applications. Journal of Biomedical Materials Research Part A, 93(3), 852–863.

Özkahraman, B., Özbaş, Z., Bayrak, G., Tamahkar, E., Perçin, I., Süloğlu, A. K., and Boran, F. (2022). Characterization and antibacterial activity of gelatin–gellan gum bilayer wound dressing. International Journal of Polymeric Materials and Polymeric Biomaterials, 71(16), 1240–1251.

Pal, V. K., Jain, R., and Roy, S. (2019). Tuning the supramolecular structure and function of collagen mimetic ionic complementary peptides via electrostatic interactions. Langmuir, 36(4), 1003–1013.

Patel, K., Munir, D., and Santos, R. (2022). Beneficial use of animal hides for abattoir and tannery waste management: A review of unconventional, innovative, and sustainable approaches. Environmental Science and Pollution Research, 29, 1807–1823.

Patinggi, S. K., Bakhtiar, Y., Budijitno, S., Susilaningsih, N., and Bahrudin, U. (2023). Hydrolyzed VCO cream reduces neutrophil number and increases angiogenesis in mid dermal burn wound healing. The Indonesian Biomedical Journal, 15(3), 240–246.

Permana, A. D., Sam, A., Marzaman, A. N. F., Rahim, A., Nainu, F., Bahar, M. A., Asri, R. M., and Chabib, L. (2023). Solid lipid nanoparticles cyclodextrin-decorated incorporated into gellan gum-based dry floating in situ delivery systems for controlled release of bioactive compounds of safflower (Carthamus tinctorius L.): A proof of concept study in biorelevant media. International Journal of Biological Macromolecules, 237, 124084.

Picone, C. S. F., and da Cunha, R. L. (2010). Interactions between milk proteins and gellan gum in acidified gels. Food Hydrocolloids, 24(5), 502–511.

Polat, T. G., Duman, O., and Tunc, S. (2020). Agar/κ-carrageenan/montmorillonite nanocomposite hydrogels for wound dressing applications. International Journal of Biological Macromolecules, 164, 4591–4602.

Prezotti, F. G., Siedle, I., Boni, F. I., Chorilli, M., Müller, I., and Cury, B. S. F. (2020). Mucoadhesive films based on gellan gum/pectin blends as potential platform for buccal drug delivery. Pharmaceutical Development and Technology, 25(2), 159–167.

Radhakrishnan, S., Nagarajan, S., Bechelany, M., and Kalkura, S. N. (2018, September 24–27). Collagen based biomaterials for tissue engineering applications: A review [Paper presentation]. Processes and Phenomena on the Boundary between Biogenic and Abiogenic Nature, Saint Petersburg, Russia.

Rahmani, H., Najafi, S. H. M., Ashori, A., Fashapoyeh, M. A., Mohseni, F. A., and Torkaman, S. (2020). Preparation of chitosan-based composites with urethane cross linkage and evaluation of their properties for using as wound healing dressing. Carbohydrate Polymers, 230, 115606.

Razali, M. H., Ismail, N. A., and Amin, K. A. M. (2020). Titanium dioxide nanotubes incorporated gellan gum bio-nanocomposite film for wound healing: Effect of TiO2 nanotubes concentration. International Journal of Biological Macromolecules, 153, 1117–1135.

Rezvani Ghomi, E., Nourbakhsh, N., Akbari Kenari, M., Zare, M., and Ramakrishna, S. (2021). Collagen‐based biomaterials for biomedical applications. Journal of Biomedical Materials Research Part B, 109(12), 1986–1999.

Ricard-Blum, S. (2011). The collagen family. Cold Spring Harbor Perspectives in Biology, 3(1), a004978.

Salunke, S. R., and Patil, S. B. (2016). Ion activated in situ gel of gellan gum containing salbutamol sulphate for nasal administration. International Journal of Biological Macromolecules, 87, 41–47.

Sathuvan, M., Thangam, R., Cheong, K. L., Kang, H., and Liu, Y. (2023). κ-Carrageenan-essential oil loaded composite biomaterial film facilitates mechanosensing and tissue regenerative wound healing. International Journal of Biological Macromolecules, 241, 124490.

Sebri, N. J. M., and Amin, K. A. M. (2016). Gellan gum/ibuprofen hydrogel for dressing application: Mechanical properties, release activity and biocompatibility studies. International Journal of Applied Chemistry, 12(4), 483–498.

Shanmugapriya, K., Kim, H., and Kang, H. W. (2020). Fucoidan-loaded hydrogels facilitates wound healing using photodynamic therapy by in vitro and in vivo evaluation. Carbohydrate Polymers, 247, 116624.

Shao, W., Wu, J., Wang, S., Huang, M., Liu, X., and Zhang, R. (2017). Construction of silver sulfadiazine loaded chitosan composite sponges as potential wound dressings. Carbohydrate Polymers, 157, 1963–1970.

Shekhter, A. B., Fayzullin, A. L., Vukolova, M. N., Rudenko, T. G., Osipycheva, V. D., and Litvitsky, P. F. (2019). Medical applications of collagen and collagen-based materials. Current Medicinal Chemistry, 26(3), 506–516.

Silalahi, J., Yuandani, Y., Meliala, D. I. P. B., Margata, L., and Satria, D. (2019). The activity of hydrolyzed virgin coconut oil to increase proliferation and cyclooxygenase-2 expression towards on NIH 3T3 cell line in wound healing process. Open Access Macedonian Journal of Medical Sciences, 7(19), 3164.

Sillat, T., Saat, R., Pöllänen, R., Hukkanen, M., Takagi, M., and Konttinen, Y. T. (2012). Basement membrane collagen type IV expression by human mesenchymal stem cells during adipogenic differentiation. Journal of Cellular and Molecular Medicine, 16(7), 1485–1495.

Sionkowska, A., Skrzyński, S., Śmiechowski, K., and Kołodziejczak, A. (2017). The review of versatile application of collagen. Polymers for Advanced Technologies, 28(1), 4–9.

Souza, J. M., Henriques, M., Teixeira, P., Fernandes, M. M., Fangueiro, R., and Zille, A. (2019). Comfort and infection control of chitosan-impregnated cotton gauze as wound dressing. Fibers and Polymers, 20, 922–932.

Strang, H., Kaul, A., Parikh, U., Masri, L., Saravanan, S., Li, H., Miao, Q., and Balaji, S. (2020). Role of cytokines and chemokines in wound healing. In Wound Healing, Tissue Repair, and Regeneration in Diabetes (Bagchi, B., Das A., and Roy, S., Eds.), pp. 197–235. London, UK: Academic Press.

Sun, Z., Hu, K., Wang, T., Chen, X., Meng, N., Peng, X., Ma, L., Tian, D., Xiong, S., and Zhou, C. (2024). Enhanced physiochemical, antibacterial, and hemostatic performance of collagen-quaternized chitosan-graphene oxide sponges for promoting infectious wound healing. International Journal of Biological Macromolecules, 266, 131277.

Syazwani Mohd, S., Abdullah, M. A. A., and Mat Amin, K. A. (2016). Compression strength of gellan gum hydrogel incorporated with organo-montmorillonite and cloisite 15A. Materials Science Forum, 840, 236–239.

Tang, C., Zhou, K., Zhu, Y., Zhang, W., Xie, Y., Wang, Z., Zhou, H., Yang, T., Zhang, Q., and Xu, B. (2022). Collagen and its derivatives: From structure and properties to their applications in food industry. Food Hydrocolloids, 131, 107748.

Tavakoli, S., and Klar, A. S. (2020). Advanced hydrogels as wound dressings. Biomolecules, 10(8), 1169.

Türe, H. (2019). Characterization of hydroxyapatite-containing alginate–gelatin composite films as a potential wound dressing. International Journal of Biological Macromolecules, 123, 878–888.

Vilela, C. A., Correia, C., da Silva Morais, A., Santos, T. C., Gertrudes, A. C., Moreira, E. S., Frias, A. M., Learmonth, D. A., Oliveira, P., Oliveira, J. M., Sousa, R. A., Espregueira-Mendes, J. D., and Reis, R. L. (2018). In vitro and in vivo performance of methacrylated gellan gum hydrogel formulations for cartilage repair. Journal of Biomedical Materials Research Part A, 106(7), 1987–1996.

Vilela, J. A. P., de Assis Perrechil, F., Picone, C. S. F., Sato, A. C. K., and da Cunha, R. L. (2015). Preparation, characterization and in vitro digestibility of gellan and chitosan–gellan microgels. Carbohydrate Polymers, 117, 54–62.

Vuornos, K., Huhtala, H., Kääriäinen, M., Kuismanen, K., Hupa, L., Kellomäki, M., and Miettinen, S. (2020). Bioactive glass ions for in vitro osteogenesis and microvascularization in gellan gum‐collagen hydrogels. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 108(4), 1332–1342.

Vuornos, K., Ojansivu, M., Koivisto, J. T., Häkkänen, H., Belay, B., Montonen, T., Huhtala, H., Kääriäinen, M., Hupa, L., Kellomäki, M., Hyttinen, J., Ihalainen, J. A., and Miettinen, S. (2019). Bioactive glass ions induce efficient osteogenic differentiation of human adipose stem cells encapsulated in gellan gum and collagen type I hydrogels. Materials Science and Engineering: C, 99, 905–918.

Wang, C., Brisson, B. K., Terajima, M., Li, Q., Han, B., Goldberg, A. M., Liu, X. S., Marcolongo, M. S., Enomoto-Iwamoto, M., Yamauchi, M., Volk, A. W., and Han, L. (2020). Type III collagen is a key regulator of the collagen fibrillar structure and biomechanics of articular cartilage and meniscus. Matrix Biology, 85–86, 47–67.

Wang, F., Wen, Y., and Bai, T. (2016). The composite hydrogels of polyvinyl alcohol–gellan gum-Ca2+ with improved network structure and mechanical property. Materials Science and Engineering: C, 69, 268–275.

Wang, H. (2021). A review of the effects of collagen treatment in clinical studies. Polymers, 13(22), 3868.

Wang, S.-J., Jiang, D., Zhang, Z.-Z, Chen, Y.-R., Yang, Z.-D., Zhang, J.-Y., Shi, J., Wang, X., and Yu, J.-K. (2019). Biomimetic nanosilica–collagen scaffolds for in situ bone regeneration: Toward a cell‐free, one‐step surgery. Advanced Materials, 31(49), 1904341.

Wang, W., Liu, Y., Liu, A., Xiao, J., Wang, K., Zhao, Y., Zhang, S., and Zhang, L. (2017). Fabrication of acid-swollen collagen fiber-based composite films: Effect of nano-hydroxyapatite on packaging related properties. International Journal of Food Properties, 20(5), 968–978.

Warren, H., and Panhuis, M. (2015). Highly conducting composite hydrogels from gellan gum, PEDOT: PSS and carbon nanofibres. Synthetic Metals, 206, 61–65.

Wei, X., Cai, J., Wang, C., Yang, K., Ding, S., Tian, F., and Lin, S. (2022). Quaternized chitosan/cellulose composites as enhanced hemostatic and antibacterial sponges for wound healing. International Journal of Biological Macromolecules, 210, 271–281.

Wichai, S., Chuysinuan, P., Chaiarwut, S., Ekabutr, P., and Supaphol, P. (2019). Development of bacterial cellulose/alginate/chitosan composites incorporating copper (II) sulfate as an antibacterial wound dressing. Journal of Drug Delivery Science and Technology, 51, 662–671.

Wong, S. K., Rangiah, T., Bakri, N. S. A., Ismail, W. N. A., Bojeng, E. E. F., Abd Rahiman, M. A., Soliman, A. M., Ghafar, N., Das, S., and Teoh, S. L. (2019). The effects of virgin coconut oil on fibroblasts and myofibroblasts on diabetic wound healing. Medicine and Health, 14(2), 132–141.

Wu, D., Yu, Y., Tan, J., Huang, L., Luo, B., Lu, L., and Zhou, C. (2018). 3D bioprinting of gellan gum and poly (ethylene glycol) diacrylate based hydrogels to produce human-scale constructs with high-fidelity. Materials and Design, 160, 486–495.

Xie, H., Chen, X., Shen, X., He, Y., Chen, W., Luo, Q., Ge, W., Yuan, W., Tang, X., Hou, D., Jiang, D., Wang, Q., Liu, Y., Liu, Q., and Li, K. (2018). Preparation of chitosan-collagen-alginate composite dressing and its promoting effects on wound healing. International Journal of Biological Macromolecules, 107(Part A), 93–104.

Xie, Z.-T., Zeng, J., Kang, D.-H., Saito, S., Miyagawa, S., Sawa, Y., and Matsusaki, M. (2023). 3D printing of collagen scaffold with enhanced resolution in a citrate‐modulated gellan gum microgel bath. Advanced Healthcare Materials, 12(27), 2301090.

Ye, S., Jiang, L., Su, C., Zhu, Z., Wen, Y., and Shao, W. (2019). Development of gelatin/bacterial cellulose composite sponges as potential natural wound dressings. International Journal of Biological Macromolecules, 133, 148–155.

Yu, Y., Zhang, W., Liu, X., Wang, H., Shen, J., Xiao, H., Mei, J., Chai, Y., and Wen, G. (2022). Extracellular matrix scaffold-immune microenvironment modulates tissue regeneration. Composites Part B: Engineering, 230, 109524.

Zeng, Y.-Q., He, J.-T., Hu, B.-Y., Li, W., Deng, J., Lin, Q.-L., and Fang, Y. (2022). Virgin coconut oil: A comprehensive review of antioxidant activity and mechanisms contributed by phenolic compounds. Critical Reviews in Food Science and Nutrition, 64(4), 1052–1075.

Zhang, L., Yang, G., Johnson, B. N., and Jia, X. (2019). Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomaterialia, 84, 16–33.

Zhang, L., Zheng, T., Wu, L., Han, Q., Chen, S., Kong, Y., Li, G., Ma, L., Wu, H., Zhao, Y., Yu, Y., and Yang, Y. (2021). Fabrication and characterization of 3D-printed gellan gum/starch composite scaffold for Schwann cells growth. Nanotechnology Reviews, 10(1), 50–61.

Zhang, W., Luan, D., Tang, J., Sablani, S. S., Rasco, B., Lin, H., and Liu, F. (2015). Dielectric properties and other physical properties of low-acyl gellan gel as relevant to microwave assisted pasteurization process. Journal of Food Engineering, 149, 195–203.

Zhang, X., Pan, Y., Li, S., Xing, L., Du, S., Yuan, G., Li, J., Zhou, T., Xiong, D., Tan, H., Ling, Z., Chen, Y., Hu, X., and Niu, X. (2020). Doubly crosslinked biodegradable hydrogels based on gellan gum and chitosan for drug delivery and wound dressing. International Journal of Biological Macromolecules, 164, 2204–2214.

Zhang, Y., Jiang, M., Zhang, Y., Cao, Q., Wang, X., Han, Y., Sun, G., Li, Y., and Zhou, J. (2019). Novel lignin–chitosan–PVA composite hydrogel for wound dressing. Materials Science and Engineering: C, 104, 110002.

Zhu, S., Yao, L., Pan, C., Tian, J., Li, L., Luo, B., Zhou, C., and Lu, L. (2021). 3D printed gellan gum/graphene oxide scaffold for tumor therapy and bone reconstruction. Composites Science and Technology, 208, 108763.

Zia, K. M., Tabasum, S., Khan, M. F., Akram, N., Akhter, N., Noreen, A., and Zuber, M. (2018). Recent trends on gellan gum blends with natural and synthetic polymers: A review. International Journal of Biological Macromolecules, 109, 1068–1087.

Zia, T., Usman, M., Sabir, A., Shafiq, M., and Khan, R. U. (2020). Development of inter-polymeric complex of anionic polysaccharides, alginate/k-carrageenan bio-platform for burn dressing. International Journal of Biological Macromolecules, 157, 83–95.