An easy platform for calculating biodiesel yield with a graphical user interface
Main Article Content
Abstract
An algorithm for calculating the biodiesel yield from esterification/transesterification was developed. The algorithm was represented in a program to facilitate researchers in exploring different types of feedstocks and catalysts. The input program of the preliminary yield data was processed numerically to generate reaction rate constant (k), reaction order (n), and activation energy (Ea) as a part of the kinetics response. The study revealed that the transesterification of used cooking oil and methanol with 0.25 wt% KOH catalyst had pseudo-first-order kinetics, with Ea = 21.7 kJ/mol. The optimum % yield obtained through the calculation was 96.5% at 323 K (50°C) within 10 h of reaction time. This program succeeded in validating secondary data from experimental research with a tolerance level of 10–17%. The program was validated where the model accuracy (R2) for the first and second validations were 0.90 and 0.98, respectively. The application of this program is not limited to a specific biodiesel reaction design and can be extended to other designs as well.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Biofuels International. (2022). Canola oil approved by EPA as feedstock for renewable diesel. Biofuels International. https://biofuels-news.com/news/canola-oil-approved-by-epa-as-feedstock-for-renewable-diesel/
Farobie, O., & Hartulistiyoso, E. (2022). Palm oil biodiesel as a renewable energy resource in Indonesia: Current status and challenges. BioEnergy Research, 15(1), 93–111. https://doi.org/10.1007/s12155-021-10344-7
Gumahin, A. C., Galamiton, J. M., Allerite, M. J., Valmorida, R. S., Laranang, J.-R. L., Mabayo, V. I. F., Arazo, R. O., & Ido, A. L. (2019). Response surface optimization of biodiesel yield from pre-treated waste oil of rendered pork from a food processing industry. Bioresources and Bioprocessing, 6, Article 48. https://doi.org/10.1186/s40643-019-0284-2
Hair, J. F., Jr. Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021). Evaluation of the structural model. In J. F. Hair, Jr., G. T. M. Hult, C. M. Ringle, M. Sarstedt, N. P. Danks, & S. Ray (Eds.), Partial least squares structural equation modeling (PLS-SEM) using R (pp. 115–138). Springer.
Kaur, N., & Ali, A. (2014). Kinetics and reusability of Zr/CaO as heterogeneous catalyst for the ethanolysis and methanolysis of Jatropha crucas oil. Fuel Processing Technology, 119, 173–184. https://doi.org/10.1016/j.fuproc.2013.11.002
Kell, S. (2023). Opinion: U.S. proposal of less soy in biodiesel would cool soybean market. Farmers Forum. https://farmersforum.com/u-s-proposal-of-less-soy-in-biodiesel-would-cool-soybean-market/
Kumar, S. (2020). Comparison of linear regression and artificial neural network technique for prediction of a soybean biodiesel yield. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 42(12), 1425–1435. https://doi.org/10.1080/15567036.2019.1604858
Lee, H. V., Juan, J. C., Taufiq-Yap, Y. H., Kong, P. S., & Rahman, N. A. (2015). Advancement in heterogeneous base catalyzed technology: An efficient production of biodiesel fuels. Journal of Renewable and Sustainable Energy, 7(3), Article 032701. https://doi.org/10.1063/1.4919082
Lukić, I., Kesić, Ž., Maksimović, S., Zdujić, M., Liu, H., Krstić, J., & Skala, D. (2013). Kinetics of sunflower and used vegetable oil methanolysis catalyzed by CaO·ZnO. Fuel, 113, 367–378. https://doi.org/10.1016/j.fuel.2013.05.093
Martinez-Guerra, E., & Gude, V. G. (2016). Biodiesel production from vegetable oils: A sustainable energy alternative. In B. Holt (Ed.), Vegetable oil: Properties, uses and benefits (pp. 55–81). Nova Science Publisher.
Morgado, I. C., & Paiva, A. C. R. (2018). Mobile GUI testing. Software Quality Journal, 26(4), 1553–1570. https://doi.org/10.1007/s11219-017-9387-1
Obligado, A. B., Demafelis, R. B., Matanguihan, A. E. D., Villancio, V. T., Magadia, R. V., Jr., & Manaig, L. M. A. (2017). Carbon emission inventory of a commercial-scale Jatropha (Jatropha curcas L.) biodiesel processing plant [Special issue]. Journal of Environmental Science and Management, (1), 20–32. https://doi.org/10.47125/jesam/2017_sp1/03
Ogunkunle, O., Oniya, O. O., & Adebayo, A. O. (2017). Yield response of biodiesel production from heterogeneous and homogeneous catalysis of milk bush seed (Thevetia peruviana) Oil. Energy and Policy Research, 4(1), 21–28. https://doi.org/10.1080/23815639.2017.1319772
Oulasvirta, A., Dayama, N. R., Shiripour, M., John, M., & Karrenbauer, A. (2020). Combinatorial optimization of graphical user interface designs. Proceedings of the IEEE, 108(3), 434–464. https://doi.org/10.1109/JPROC.2020.2969687
Satyanarayana, M., & Muraleedharan, C. (2011). A comparative study of vegetable oil methyl esters (biodiesels). Energy, 36(4), 2129–2137. https://doi.org/10.1016/j.energy.2010.09.050
Sofyan, M. I., Hafizah, M. A. E., & Manaf, A. (2021). The s-curve model of biodiesel transesterification by numerical methods based on brief experimental data. AIP Conference Proceedings, 2374(1), Article 020005 https://doi.org/10.1063/5.0061169
Srilatha, K., Lingaiah, N., Devi, B. L. A. P., Prasad, R. B. N., Venkateswar, S., & Prasad, P. S. S. (2009). Esterification of free fatty acids for biodiesel production over heteropoly tungstate supported on niobia catalysts. Applied Catalysis A: General, 365(1), 28–33. https://doi.org/10.1016/j.apcata.2009.05.025
Stamenković, O. S., Veljković, V. B., Todorović, Z. B., Lazić, M. L., Banković-Ilić, I. B., & Skala, D. U. (2010). Modeling the kinetics of calcium hydroxide catalyzed methanolysis of sunflower oil. Bioresource Technology, 101(12), 4423–4430. https://doi.org/10.1016/j.biortech.2010.01.109
Torres, J. A. G., Lau, S. H., Anchuri, P., Stevens, J. M., Tabora, J. E., Li, J., Borovika, A., Adams, R. P., & Doyle, A. G. (2022). A multi-objective active learning platform and web app for reaction optimization. Journal of the American Chemical Society, 144(43), 19999–20007. https://doi.org/10.1021/jacs.2c08592
Ullah, Z., Khan, M., Naqvi, S. R., Farooq, W., Yang, H., Wang, S., & Vo, D.-V. N. (2021). A comparative study of machine learning methods for bio-oil yield prediction – A genetic algorithm-based features selection. Bioresource Technology, 335, Article 125292. https://doi.org/10.1016/j.biortech.2021.125292
Vujicic, D., Comic, D., Zarubica, A., Micic, R., & Boskovic, G. (2010). Kinetics of biodiesel synthesis from sunflower oil over CaO heterogeneous catalyst. Fuel, 89(8), 2054–2061. https://doi.org/10.1016/j.fuel.2009.11.043