Isolation of peat soil bacteria producing antimicrobial agents against Escherichia coli and Salmonella Typhimurium

Main Article Content

Dede Mahdiyah
Putri Vidia Sari Darsono
Nur Hidayah
Bayu Hari Mukti

Abstract

The global rise of antimicrobial resistance poses a severe threat to public health, demanding the discovery of novel antibacterial agents. Peat soil is an extreme environment that can be used to isolate bacteria that produce bioactive compounds. This study examined the antibacterial activity of peat soil bacteria against Escherichia coli and Salmonella Typhimurium. Peat soil bacteria were isolated using tryptone soy agar (TSA), and their morphology and characteristics were assessed (Gram staining, catalase activity). The antibacterial activity of these bacteria was examined using the well diffusion method. The minimum inhibitory concentration (MIC) of each isolated substance was determined using the dilution method, and the minimum bactericidal concentration was determined by the spread plate method. Nine bacterial isolates, termed peat soil bacteria-1–9 (PSB1–9), were obtained at dilutions of 1 × 10−7–1 × 10−1 on TSA. Of these, PSB-7, PSB-8, and PSB-9 exhibited potential antibacterial activity against S. Typhimurium and E. coli. These isolates were characterized as Gram-positive rods. The MICs of PSB-7–9 against E. coli were 4, 3, and 3 mg/mL, respectively. For S. Typhimurium, the MICs were 3, 4, and 4 mg/mL, respectively. However, none of the isolates exhibited bactericidal activity against either pathogen.

Downloads

Download data is not yet available.

Article Details

How to Cite
Mahdiyah, D., Sari Darsono, P. V., Hidayah, N., & Mukti, B. H. (2025). Isolation of peat soil bacteria producing antimicrobial agents against Escherichia coli and Salmonella Typhimurium. Science, Engineering and Health Studies, 19, 25030002. https://doi.org/10.69598/sehs.19.25030002
Section
Biological sciences

References

Alahadeb, J. I. (2022). Inhibitory potentials of Streptomyces exfoliatus strain ‘MUJA10’ against bacterial pathogens isolated from rural areas in Riyadh, Saudi Arabia. PLoS ONE, 17(4), Article e0266297. https://doi.org/10.1371/journal.pone.0266297

Alam, K., Mazumder, A., Sikdar, S., Zhao, Y.-M., Hao, J., Song, C., Wang, Y., Sarkar, R., Islam, S., Zhang, Y., & Li, A. (2022). Streptomyces: The biofactory of secondary metabolites. Frontiers in Microbiology, 13, Article 968053. https://doi.org/10.3389/fmicb.2022.968053

Alenazy, R. (2022). Antibiotic resistance in Salmonella: Targeting multidrug resistance by understanding efflux pumps, regulators and the inhibitors. Journal of King Saud University - Science, 34(7), Article 102275. https://doi.org/10.1016/j.jksus.2022.102275

Annunziato, G. (2019). Strategies to overcome antimicrobial resistance (AMR) making use of non-essential target inhibitors: A review. International Journal of Molecular Sciences, 20(23), Article 5844. https://doi.org/10.3390/ijms20235844

Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71–79. https://doi.org/10.1016/j.jpha.2015.11.005

Breijyeh, Z., Jubeh, B., & Karaman, R. (2020). Resistance of Gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules, 25(6), Article 1340. https://doi.org/10.3390/molecules25061340

Capita, R., Vicente-Velasco, M., Rodríguez-Melcón, C., García-Fernández, C., Carballo, J., & Alonso-Calleja, C. (2019). Effect of low doses of biocides on the antimicrobial resistance and the biofilms of Cronobacter sakazakii and Yersinia enterocolitica. Scientific Reports, 9, Article 15905. https://doi.org/10.1038/s41598-019-51907-1

Daniels, A. O., Temikotan, T., Akinkugbe, A. O., & Ibiyemi, D. (2020). Catalase activity and hydrophobicity test of bacteria susceptible to extracts of Cleistopholis patens and Piliostigma reticulatum. European Journal of Biology and Biotechnology, 1(3). https://doi.org/10.24018/ejbio.2020.1.3.18

El Sayed, M., Ghanerad, N., Rahimi, F., Shabanpoor, M., & Shabanpour, Z. (2020). Antibacterial activity of sodium hypochlorite gel versus different types of root canal medicaments using agar diffusion test: An in vitro comparative study. International Journal of Dentistry, 2020(1), Article 6483026. https://doi.org/10.1155/2020/6483026

Eloff, J. N. (2019). Avoiding pitfalls in determining antimicrobial activity of plant extracts and publishing the results. BMC Complementary and Alternative Medicine, 19(1), Article 106. https://doi.org/10.1186/s12906-019-2519-3

European Antimicrobial Resistance Collaborators. (2022). The burden of bacterial antimicrobial resistance in the WHO European region in 2019: A cross-country systematic analysis. The Lancet Public Health, 7(11), e897–e913. https://doi.org/10.1016/S2468-2667(22)00225-0

European Food Safety Authority, & European Centre for Disease Prevention and Control. (2022). The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2019–2020. EFSA Journal, 20(3), Article e07209. https://doi.org/10.2903/j.efsa.2022.7209

Galindo-Méndez, M. (2020). Antimicrobial resistance in Escherichia coli. In L. Rodrigo (Ed.), E. coli infections – Importance of early diagnosis and efficient treatment (pp. 1–15). IntechOpen. https://doi.org/10.5772/intechopen.93115

Hormozi, S. F., Vasei, N., Aminianfar, M., Darvishi, M., & Saeedi, A. A. (2018). Antibiotic resistance in patients suffering from nosocomial infections in Besat hospital. European Journal of Translational Myology, 28(3), Article 7594. https://doi.org/10.4081/ejtm.2018.7594

Kono, Y. (1995). Apparent antibacterial activity of catalase: Role of lipid hydroperoxide contamination. The Journal of Biochemistry, 117(1), 42–46. https://doi.org/10.1093/oxfordjournals.jbchem.a124718

Kowalska-Krochmal, B., & Dudek-Wicher, R. (2021). The minimum inhibitory concentration of antibiotics: Methods, interpretation, clinical relevance. Pathogens, 10(2), Article 165. https://doi.org/10.3390/pathogens10020165

Li, J., Xie, S., Ahmed, S., Wang, F., Gu, Y., Zhang, C., Chai, X., Wu, Y., Cai, J., & Cheng, G. (2017). Antimicrobial activity and resistance: Influencing factors. Frontiers in Pharmacology, 8, Article 364. https://doi.org/10.3389/fphar.2017.00364

Mahdiyah, D. (2015). Isolasi bakteri dari tanah gambut penghasil enzim protease. Jurnal Pharmascience, 2(2), 71–79. http://dx.doi.org/10.20527/jps.v2i2.5825 [in Indonesian]

Mahdiyah, D., Farida, H., Riwanto, I., Mustofa, M., Wahjono, H., Laksana Nugroho, T., & Reki, W. (2020). Screening of Indonesian peat soil bacteria producing antimicrobial compounds. Saudi Journal of Biological Sciences, 27(10), 2604–2611. https://doi.org/10.1016/j.sjbs.2020.05.033

Mahdiyah, D., Theana, M., Rahmadani, Sari, A., & Mukti, B. H. (2023). The antibacterial activity of Gambir extract (Uncaria gambir (hunter) Roxb) against Salmonella typhi. KnE Social Sciences, 2023, 747–757. https://doi.org/10.18502/kss.v8i9.13389

Mancuso, G., Midiri, A., Gerace, E., & Biondo, C. (2021). Bacterial antibiotic resistance: The most critical pathogens. Pathogens, 10(10), Article 1310. https://doi.org/10.3390/pathogens10101310

Masschelein, J., Jenner, M., & Challis, G. L. (2017). Antibiotics from Gram-negative bacteria: A comprehensive overview and selected biosynthetic highlights. Natural Product Reports, 34(7), 712–783. https://doi.org/10.1039/C7NP00010C

Mir, M. A., Altuhami, S. A., Mondal, S., Bashir, N., Dera, A. A., & Alfhili, M. A. (2023). Antibacterial and antibiofilm activities of β-Lapachone by modulating the catalase enzyme. Antibiotics, 12(3), Article 576. https://doi.org/10.3390/antibiotics12030576

Mukti, B. H. (2024). Ethnobotanical studies of medicinal plants in Borneo: Bridging tradition and pharmaceutical research. Health Sciences International Journal, 2(2), 154–168. https://doi.org/10.71357/hsij.v2i2.41

Murray, C. J. L., Ikuta, K. S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett, S., Haines-Woodhouse, G., Kashef Hamadani, B. H., Kumaran, E. A. P., McManigal, B., … Naghavi, M. (2022). Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. The Lancet, 399(10325), 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0

Nair, D. V. T., Venkitanarayanan, K., & Kollanoor Johny, A. (2018). Antibiotic-resistant Salmonella in the food supply and the potential role of antibiotic alternatives for control. Foods, 7(10), Article 167. https://doi.org/10.3390/foods7100167

Nandi, A., Yan, L.-J., Jana, C. K., & Das, N. (2019). Role of catalase in oxidative stress- and age-associated degenerative diseases. Oxidative Medicine and Cellular Longevity, 2019(1), Article 9613090. https://doi.org/10.1155/2019/9613090

Nwobodo, D. C., Ugwu, M. C., Anie, C. O., Al‐Ouqaili, M. T. S., Ikem, J. C., Chigozie, U. V., & Saki, M. (2022). Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. Journal of Clinical Laboratory Analysis, 36(9), Article e24655. https://doi.org/10.1002/jcla.24655

Ojkic, N., Serbanescu, D., & Banerjee, S. (2022). Antibiotic resistance via bacterial cell shape-shifting. mBio, 13(3), Article e00659-22. https://doi.org/10.1128/mbio.00659-22

Ouchari, L., Boukeskasse, A., Bouizgarne, B., & Ouhdouch, Y. (2019). Antimicrobial potential of actinomycetes isolated from the unexplored hot Merzouga desert and their taxonomic diversity. Biology Open, 8(2), Article bio035410. https://doi.org/10.1242/bio.035410

Poirel, L., Madec, J.-Y., Lupo, A., Schink, A.-K., Kieffer, N., Nordmann, P., & Schwarz, S. (2018). Antimicrobial resistance in Escherichia coli. Microbiology Spectrum, 6(4), Article ARBA-0026-2017. https://doi.org/10.1128/microbiolspec.ARBA-0026-2017

Rasheed, Z. (2024). Therapeutic potentials of catalase: Mechanisms, applications, and future perspectives. International Journal of Health Sciences, 18(2), 1–6.

Rodríguez-Melcón, C., Alonso-Calleja, C., García-Fernández, C., Carballo, J., & Capita, R. (2022). Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for twelve antimicrobials (biocides and antibiotics) in eight strains of Listeria monocytogenes. Biology, 11(1), Article 46. https://doi.org/10.3390/biology11010046

Rodríguez-Melcón, C., Riesco-Peláez, F., García-Fernández, C., Alonso-Calleja, C., & Capita, R. (2019). Susceptibility of Listeria monocytogenes planktonic cultures and biofilms to sodium hypochlorite and benzalkonium chloride. Food Microbiology, 82, 533–540. https://doi.org/10.1016/j.fm.2019.03.020

Serwecińska, L. (2020). Antimicrobials and antibiotic-resistant bacteria: A risk to the environment and to public health. Water, 12(12), Article 3313. https://doi.org/10.3390/w12123313

Shiomi, D., Mori, H., & Niki, H. (2009). Genetic mechanism regulating bacterial cell shape and metabolism. Communicative & Integrative Biology, 2(3), 219–220. https://doi.org/10.4161/cib.2.3.7930

van Teeseling, M. C. F., de Pedro, M. A., & Cava, F. (2017). Determinants of bacterial morphology: From fundamentals to possibilities for antimicrobial targeting. Frontiers in Microbiology, 8, Article 1264. https://doi.org/10.3389/fmicb.2017.01264

Wang, S., Zhao, S., Zhou, Y., Jin, S., Ye, T., & Pan, X. (2023). Antibiotic resistance spectrum of E. coli strains from different samples and age-grouped patients: A 10-year retrospective study. BMJ Open, 13(4), Article e067490. https://doi.org/10.1136/bmjopen-2022-067490

Wang, X., Cao, X., Xu, H., Zhang, S., Gao, Y., Deng, Z., & Li, J. (2021). Research on the properties of peat soil and foundation treatment technology. E3S Web of Conferences, 272, Article 02019. https://doi.org/10.1051/e3sconf/202127202019

World Health Organization. (2019). Health workers’ education and training on antimicrobial resistance: Curricula guide. World Health Organization. https://apps.who.int/iris/handle/10665/329380

Wu, D., Ding, Y., Yao, K., Gao, W., & Wang, Y. (2021). Antimicrobial resistance analysis of clinical Escherichia coli isolates in neonatal ward. Frontiers in Pediatrics, 9, Article 670470. https://doi.org/10.3389/fped.2021.670470

Yuan, F., Yin, S., Xu, Y., Xiang, L., Wang, H., Li, Z., Fan, K., & Pan, G. (2021). The richness and diversity of catalases in bacteria. Frontiers in Microbiology, 12, Article 645477. https://doi.org/10.3389/fmicb.2021.645477

Yuzugullu-Karakus, Y. (2020). Typical catalases: Function and structure. In M. D. Bagatini (Ed.), Glutathione system and oxidative stress in health and disease (pp. 1–14). IntechOpen. https://doi.org/10.5772/intechopen.90048