Isolation of peat soil bacteria producing antimicrobial agents against Escherichia coli and Salmonella Typhimurium
Main Article Content
Abstract
The global rise of antimicrobial resistance poses a severe threat to public health, demanding the discovery of novel antibacterial agents. Peat soil is an extreme environment that can be used to isolate bacteria that produce bioactive compounds. This study examined the antibacterial activity of peat soil bacteria against Escherichia coli and Salmonella Typhimurium. Peat soil bacteria were isolated using tryptone soy agar (TSA), and their morphology and characteristics were assessed (Gram staining, catalase activity). The antibacterial activity of these bacteria was examined using the well diffusion method. The minimum inhibitory concentration (MIC) of each isolated substance was determined using the dilution method, and the minimum bactericidal concentration was determined by the spread plate method. Nine bacterial isolates, termed peat soil bacteria-1–9 (PSB1–9), were obtained at dilutions of 1 × 10−7–1 × 10−1 on TSA. Of these, PSB-7, PSB-8, and PSB-9 exhibited potential antibacterial activity against S. Typhimurium and E. coli. These isolates were characterized as Gram-positive rods. The MICs of PSB-7–9 against E. coli were 4, 3, and 3 mg/mL, respectively. For S. Typhimurium, the MICs were 3, 4, and 4 mg/mL, respectively. However, none of the isolates exhibited bactericidal activity against either pathogen.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Alahadeb, J. I. (2022). Inhibitory potentials of Streptomyces exfoliatus strain ‘MUJA10’ against bacterial pathogens isolated from rural areas in Riyadh, Saudi Arabia. PLoS ONE, 17(4), Article e0266297. https://doi.org/10.1371/journal.pone.0266297
Alam, K., Mazumder, A., Sikdar, S., Zhao, Y.-M., Hao, J., Song, C., Wang, Y., Sarkar, R., Islam, S., Zhang, Y., & Li, A. (2022). Streptomyces: The biofactory of secondary metabolites. Frontiers in Microbiology, 13, Article 968053. https://doi.org/10.3389/fmicb.2022.968053
Alenazy, R. (2022). Antibiotic resistance in Salmonella: Targeting multidrug resistance by understanding efflux pumps, regulators and the inhibitors. Journal of King Saud University - Science, 34(7), Article 102275. https://doi.org/10.1016/j.jksus.2022.102275
Annunziato, G. (2019). Strategies to overcome antimicrobial resistance (AMR) making use of non-essential target inhibitors: A review. International Journal of Molecular Sciences, 20(23), Article 5844. https://doi.org/10.3390/ijms20235844
Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71–79. https://doi.org/10.1016/j.jpha.2015.11.005
Breijyeh, Z., Jubeh, B., & Karaman, R. (2020). Resistance of Gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules, 25(6), Article 1340. https://doi.org/10.3390/molecules25061340
Capita, R., Vicente-Velasco, M., Rodríguez-Melcón, C., García-Fernández, C., Carballo, J., & Alonso-Calleja, C. (2019). Effect of low doses of biocides on the antimicrobial resistance and the biofilms of Cronobacter sakazakii and Yersinia enterocolitica. Scientific Reports, 9, Article 15905. https://doi.org/10.1038/s41598-019-51907-1
Daniels, A. O., Temikotan, T., Akinkugbe, A. O., & Ibiyemi, D. (2020). Catalase activity and hydrophobicity test of bacteria susceptible to extracts of Cleistopholis patens and Piliostigma reticulatum. European Journal of Biology and Biotechnology, 1(3). https://doi.org/10.24018/ejbio.2020.1.3.18
El Sayed, M., Ghanerad, N., Rahimi, F., Shabanpoor, M., & Shabanpour, Z. (2020). Antibacterial activity of sodium hypochlorite gel versus different types of root canal medicaments using agar diffusion test: An in vitro comparative study. International Journal of Dentistry, 2020(1), Article 6483026. https://doi.org/10.1155/2020/6483026
Eloff, J. N. (2019). Avoiding pitfalls in determining antimicrobial activity of plant extracts and publishing the results. BMC Complementary and Alternative Medicine, 19(1), Article 106. https://doi.org/10.1186/s12906-019-2519-3
European Antimicrobial Resistance Collaborators. (2022). The burden of bacterial antimicrobial resistance in the WHO European region in 2019: A cross-country systematic analysis. The Lancet Public Health, 7(11), e897–e913. https://doi.org/10.1016/S2468-2667(22)00225-0
European Food Safety Authority, & European Centre for Disease Prevention and Control. (2022). The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2019–2020. EFSA Journal, 20(3), Article e07209. https://doi.org/10.2903/j.efsa.2022.7209
Galindo-Méndez, M. (2020). Antimicrobial resistance in Escherichia coli. In L. Rodrigo (Ed.), E. coli infections – Importance of early diagnosis and efficient treatment (pp. 1–15). IntechOpen. https://doi.org/10.5772/intechopen.93115
Hormozi, S. F., Vasei, N., Aminianfar, M., Darvishi, M., & Saeedi, A. A. (2018). Antibiotic resistance in patients suffering from nosocomial infections in Besat hospital. European Journal of Translational Myology, 28(3), Article 7594. https://doi.org/10.4081/ejtm.2018.7594
Kono, Y. (1995). Apparent antibacterial activity of catalase: Role of lipid hydroperoxide contamination. The Journal of Biochemistry, 117(1), 42–46. https://doi.org/10.1093/oxfordjournals.jbchem.a124718
Kowalska-Krochmal, B., & Dudek-Wicher, R. (2021). The minimum inhibitory concentration of antibiotics: Methods, interpretation, clinical relevance. Pathogens, 10(2), Article 165. https://doi.org/10.3390/pathogens10020165
Li, J., Xie, S., Ahmed, S., Wang, F., Gu, Y., Zhang, C., Chai, X., Wu, Y., Cai, J., & Cheng, G. (2017). Antimicrobial activity and resistance: Influencing factors. Frontiers in Pharmacology, 8, Article 364. https://doi.org/10.3389/fphar.2017.00364
Mahdiyah, D. (2015). Isolasi bakteri dari tanah gambut penghasil enzim protease. Jurnal Pharmascience, 2(2), 71–79. http://dx.doi.org/10.20527/jps.v2i2.5825 [in Indonesian]
Mahdiyah, D., Farida, H., Riwanto, I., Mustofa, M., Wahjono, H., Laksana Nugroho, T., & Reki, W. (2020). Screening of Indonesian peat soil bacteria producing antimicrobial compounds. Saudi Journal of Biological Sciences, 27(10), 2604–2611. https://doi.org/10.1016/j.sjbs.2020.05.033
Mahdiyah, D., Theana, M., Rahmadani, Sari, A., & Mukti, B. H. (2023). The antibacterial activity of Gambir extract (Uncaria gambir (hunter) Roxb) against Salmonella typhi. KnE Social Sciences, 2023, 747–757. https://doi.org/10.18502/kss.v8i9.13389
Mancuso, G., Midiri, A., Gerace, E., & Biondo, C. (2021). Bacterial antibiotic resistance: The most critical pathogens. Pathogens, 10(10), Article 1310. https://doi.org/10.3390/pathogens10101310
Masschelein, J., Jenner, M., & Challis, G. L. (2017). Antibiotics from Gram-negative bacteria: A comprehensive overview and selected biosynthetic highlights. Natural Product Reports, 34(7), 712–783. https://doi.org/10.1039/C7NP00010C
Mir, M. A., Altuhami, S. A., Mondal, S., Bashir, N., Dera, A. A., & Alfhili, M. A. (2023). Antibacterial and antibiofilm activities of β-Lapachone by modulating the catalase enzyme. Antibiotics, 12(3), Article 576. https://doi.org/10.3390/antibiotics12030576
Mukti, B. H. (2024). Ethnobotanical studies of medicinal plants in Borneo: Bridging tradition and pharmaceutical research. Health Sciences International Journal, 2(2), 154–168. https://doi.org/10.71357/hsij.v2i2.41
Murray, C. J. L., Ikuta, K. S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett, S., Haines-Woodhouse, G., Kashef Hamadani, B. H., Kumaran, E. A. P., McManigal, B., … Naghavi, M. (2022). Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. The Lancet, 399(10325), 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0
Nair, D. V. T., Venkitanarayanan, K., & Kollanoor Johny, A. (2018). Antibiotic-resistant Salmonella in the food supply and the potential role of antibiotic alternatives for control. Foods, 7(10), Article 167. https://doi.org/10.3390/foods7100167
Nandi, A., Yan, L.-J., Jana, C. K., & Das, N. (2019). Role of catalase in oxidative stress- and age-associated degenerative diseases. Oxidative Medicine and Cellular Longevity, 2019(1), Article 9613090. https://doi.org/10.1155/2019/9613090
Nwobodo, D. C., Ugwu, M. C., Anie, C. O., Al‐Ouqaili, M. T. S., Ikem, J. C., Chigozie, U. V., & Saki, M. (2022). Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. Journal of Clinical Laboratory Analysis, 36(9), Article e24655. https://doi.org/10.1002/jcla.24655
Ojkic, N., Serbanescu, D., & Banerjee, S. (2022). Antibiotic resistance via bacterial cell shape-shifting. mBio, 13(3), Article e00659-22. https://doi.org/10.1128/mbio.00659-22
Ouchari, L., Boukeskasse, A., Bouizgarne, B., & Ouhdouch, Y. (2019). Antimicrobial potential of actinomycetes isolated from the unexplored hot Merzouga desert and their taxonomic diversity. Biology Open, 8(2), Article bio035410. https://doi.org/10.1242/bio.035410
Poirel, L., Madec, J.-Y., Lupo, A., Schink, A.-K., Kieffer, N., Nordmann, P., & Schwarz, S. (2018). Antimicrobial resistance in Escherichia coli. Microbiology Spectrum, 6(4), Article ARBA-0026-2017. https://doi.org/10.1128/microbiolspec.ARBA-0026-2017
Rasheed, Z. (2024). Therapeutic potentials of catalase: Mechanisms, applications, and future perspectives. International Journal of Health Sciences, 18(2), 1–6.
Rodríguez-Melcón, C., Alonso-Calleja, C., García-Fernández, C., Carballo, J., & Capita, R. (2022). Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for twelve antimicrobials (biocides and antibiotics) in eight strains of Listeria monocytogenes. Biology, 11(1), Article 46. https://doi.org/10.3390/biology11010046
Rodríguez-Melcón, C., Riesco-Peláez, F., García-Fernández, C., Alonso-Calleja, C., & Capita, R. (2019). Susceptibility of Listeria monocytogenes planktonic cultures and biofilms to sodium hypochlorite and benzalkonium chloride. Food Microbiology, 82, 533–540. https://doi.org/10.1016/j.fm.2019.03.020
Serwecińska, L. (2020). Antimicrobials and antibiotic-resistant bacteria: A risk to the environment and to public health. Water, 12(12), Article 3313. https://doi.org/10.3390/w12123313
Shiomi, D., Mori, H., & Niki, H. (2009). Genetic mechanism regulating bacterial cell shape and metabolism. Communicative & Integrative Biology, 2(3), 219–220. https://doi.org/10.4161/cib.2.3.7930
van Teeseling, M. C. F., de Pedro, M. A., & Cava, F. (2017). Determinants of bacterial morphology: From fundamentals to possibilities for antimicrobial targeting. Frontiers in Microbiology, 8, Article 1264. https://doi.org/10.3389/fmicb.2017.01264
Wang, S., Zhao, S., Zhou, Y., Jin, S., Ye, T., & Pan, X. (2023). Antibiotic resistance spectrum of E. coli strains from different samples and age-grouped patients: A 10-year retrospective study. BMJ Open, 13(4), Article e067490. https://doi.org/10.1136/bmjopen-2022-067490
Wang, X., Cao, X., Xu, H., Zhang, S., Gao, Y., Deng, Z., & Li, J. (2021). Research on the properties of peat soil and foundation treatment technology. E3S Web of Conferences, 272, Article 02019. https://doi.org/10.1051/e3sconf/202127202019
World Health Organization. (2019). Health workers’ education and training on antimicrobial resistance: Curricula guide. World Health Organization. https://apps.who.int/iris/handle/10665/329380
Wu, D., Ding, Y., Yao, K., Gao, W., & Wang, Y. (2021). Antimicrobial resistance analysis of clinical Escherichia coli isolates in neonatal ward. Frontiers in Pediatrics, 9, Article 670470. https://doi.org/10.3389/fped.2021.670470
Yuan, F., Yin, S., Xu, Y., Xiang, L., Wang, H., Li, Z., Fan, K., & Pan, G. (2021). The richness and diversity of catalases in bacteria. Frontiers in Microbiology, 12, Article 645477. https://doi.org/10.3389/fmicb.2021.645477
Yuzugullu-Karakus, Y. (2020). Typical catalases: Function and structure. In M. D. Bagatini (Ed.), Glutathione system and oxidative stress in health and disease (pp. 1–14). IntechOpen. https://doi.org/10.5772/intechopen.90048