Clinically relevant drug-drug interactions of tacrolimus in the first week post-kidney transplantation recipients

Main Article Content

Agil Bredly Musa
Sitaporn Youngkong
Pramote Tragulpiankit
Ni Made Hustrini
Wichit Nosoongnoen

Abstract

This retrospective observational study aimed to investigate the prevalence and associated risk factors of clinically relevant drug-drug interactions of tacrolimus in kidney transplantation (KT) recipients during the first week post-transplantation. Medical records of tacrolimus-treated KT recipients were reviewed and DDIs were determined using two drug interaction programs. The presence of clinically relevant DDIs was confirmed by evaluating tacrolimus levels (C0) and adverse drug events through the drug interaction probability scale. This study enrolled 142 eligible KT recipients with mean potential DDIs in each patient of 7.8 and a standard deviation of 2.4. The majority type of potential DDIs was in the moderate category (84.0%). The prevalence of clinically relevant DDIs of tacrolimus was 18.6% (95% confidence interval: 11.4%–27.7%). Logistic regression analysis revealed that the number of potential DDIs significantly affected the likelihood of clinically relevant DDIs with tacrolimus, increasing the odds of experiencing clinically relevant immunosuppressant DDIs by 56%. These results provided compelling evidence for the substantial prevalence of clinically relevant DDIs of tacrolimus one-week post-KT and emphasized the importance of a comprehensive understanding of associated risk factors.

Downloads

Download data is not yet available.

Article Details

How to Cite
Musa, A. B., Youngkong, S., Tragulpiankit, P., Hustrini, N. M., & Nosoongnoen, W. (2023). Clinically relevant drug-drug interactions of tacrolimus in the first week post-kidney transplantation recipients. Science, Engineering and Health Studies, 17, 23050025. Retrieved from https://li01.tci-thaijo.org/index.php/sehs/article/view/260388
Section
Health sciences

References

Amkreutz, J., Koch, A., Buendgens, L., Muehlfeld, A., Trautwein, C., and Eisert, A. (2017). Prevalence and nature of potential drug-drug interactions among kidney transplant patients in a German intensive care unit. International Journal of Clinical Pharmacy, 39, 1128–1139.

Anglicheau, D., Flamant, M., Schlageter, M. H., Martinez, F., Cassinat, B., Beaune, P., Legendre, C., and Thervet, E. (2003). Pharmacokinetic interaction between corticosteroids and tacrolimus after renal transplantation. Nephrology Dialysis Transplantation, 18(11), 2409–2414.

Bril, F., Castro, V., Centurion, I. G., Espinosa, J., Keller, G. A., Gonzalez, C. D., Riera, M. C., Saubidet, C. L., Di Girolamo, G., Pujol, G. S., and Alvarez, P. A. (2016). A systematic approach to assess the burden of drug interactions in adult kidney transplant patients. Current Drug Safety, 11(2), 156–163.

Dasgupta, A. (2016). Limitations of immunoassays used for therapeutic drug monitoring of immunosuppressants. In Personalized Immunosuppression in Transplantation (Oellerich, M., and Dasgupta, A., Eds.), pp. 29–56. Waltham, Massachusetts: Elsevier.

Dashti-Khavidaki, S., Saidi, R., and Lu, H. (2021). Current status of glucocorticoid usage in solid organ trans-plantation. World Journal of Transplantation, 11(11), 443–465.

Gago-Sánchez, A. I., Font, P., Cárdenas, M., Aumente, M. D., Del Prado, J. R., and Calleja, M. (2021). Real clinical impact of drug-drug interactions of immunosuppressants in transplant patients. Pharmacology Research and Perspectives, 9(6), e00892.

Gregory, K. E., and Radovinsky, L. (2012). Research strategies that result in optimal data collection from the patient medical record. Applied Nursing Research, 25(2), 108–116.

Horn, J. R., Hansten, P. D., and Chan, L. N. (2007). Proposal for a new tool to evaluate drug interaction cases. Annals of Pharmacotherapy, 41(4), 674–680.

Hosohata, K., Masuda, S., Ogura, Y., Oike, F., Takada, Y., Katsura, T., Uemoto, S., and Inui, K. (2008). Interaction between tacrolimus and lansoprazole, but not rabeprazole in living-donor liver transplant patients with defects of CYP2C19 and CYP3A5. Drug Metabolism and Pharmacokinetics, 23(2), 134–138.

Hosohata, K., Uesugi, M., Hashi, S., Hosokawa, M., Inui, K., Matsubara, K., Ogawa, K., Fujimoto, Y., Kaido, T., Uemoto, S., and Masuda, S. (2014). Association between CYP3A5 genotypes in graft liver and increase in tacrolimus biotransformation from steroid treatment in living-donor liver transplant patients. Drug Metabolism and Pharmacokinetics, 29(1), 83–89.

Indonesian Society of Nephrology. (2013). Konsensus Transplantasi Ginjal, Jakarta: Indonesian Society of Nephrology., pp. 19–22.

Iqbal, A., Zhou, K., Kashyap, S. R., and Lansang, M. C. (2022). Early post-renal transplant hyperglycemia. The Journal of Clinical Endocrinology and Metabolisam, 107(2), 549–562.

Jansen, A. C. M., van Aalst-Cohen, E. S., Hutten, B. A., Büller, H. R., Kastelein, J. J. P., and Prins, M. H. (2005). Guidelines were developed for data collection from medical records for use in retrospective analyses. Journal of Clinical Epidemiology, 58(3), 269–274.

Jouve, T., Fonrose, X., Noble, J., Janbon, B., Fiard, G., Malvezzi, P., Stanke-Labesque, F., and Rostaing, L. (2020). The tomato study (tacrolimus metabolization in kidney transplantation): Impact of the concentration-dose ratio on death-censored graft survival. Transplantation, 104(6), 1263–1271.

Kidney Disease: Improving Global Outcomes Transplant Work Group. (2009). KDIGO clinical practice guideline for the care of kidney transplant recipients. American Journal of Transplantation, 9(Suppl 3), S1–S157.

Kim, J. S., Aviles, D. H., Silverstein, D. M., Leblanc, P. L., and Matti Vehaskari, V. (2005). Effect of age, ethnicity, and glucocorticoid use on tacrolimus pharmacokinetics in pediatric renal transplant patients. Pediatric Trans-plantation, 9(2), 162–169.

Maguire, M., Franz, T., and Hains, D. S. (2012). A clinically significant interaction between tacrolimus and multiple proton pump inhibitors in a kidney transplant recipient. Pediatric Transplantation, 16(6), E217–E220.

Marbun, M. B. H., Susalit, E., Susilowati, U., and Andina, T. (2022). Long-term outcomes and prognostic factors in kidney transplant recipients in Jakarta, Indonesia: a cohort study. BMJ Open, 12(5), e059631.

Miedziaszczyk, M. (2023). Assessment of omeprazole and famotidine effect on the pharmacokinetics of tacrolimus in patients after kidney transplant. Kidney Transplantation and Transplant Immunology, 8(3), S392.

Moradi, O., Karimzadeh, I., Davani-Davari, D., Shafiekhani, M., Sagheb, M. M., and Raees-Jalali, G. A. (2020). Drug-drug interactions among kidney transplant recipients in the outpatient setting. International Journal of Organ Transplantation Medicine, 11(4), 185–195.

Moreau, C., Taburet, A. M., Furlan, V., Debray, D., and Loriot, M. A. (2006). Interaction between tacrolimus and omeprazole in a pediatric liver transplant recipient. Transplantation, 81(3), 487–488.

Mori, T., Kato, J., Yamane, A., Sakurai, M., Kohashi, S., Kikuchi, T., Ono, Y., and Okamoto, S. (2012). Drug interaction between voriconazole and tacrolimus and its association with the bioavailability of oral voriconazole in recipients of allogeneic hematopoietic stem cell transplantation. International Journal of Hematology, 95, 564–569.

Pascual, J., Marcén, R., Orea, O. E., Navarro, M., Alarcón, M. C., Ocaña, J., Villafruela, J. J., Burgos, F. J., and Ortuño, J. (2005). Interaction between omeprazole and tacrolimus in renal allograft recipients: A clinical-analytical study. Transplantation Proceedings, 37(9), 3752–3753.

Ponticelli, C., Reggiani, F., and Moroni, G. (2022). Delayed graft function in kidney transplant: Risk factors, consequences and prevention strategies. Journal of Personalized Medicine, 12(10), 1557.

Ramadaniati, H. U., Anggriani, Y., Wowor, V. M., and Rianti, A. (2016). Drug-related problems in chronic kidneys disease patients in an Indonesian hospital: do the problems really matter? International Journal of Pharmacy and Pharmaceutical Sciences, 8(12), 298–302.

Shihab, F. S., Lee, S. T., Smith, L. D., Woodle, E. S., Pirsch, J. D., Gaber, A. O., Henning, A. K., Reisfield, R., Fitzsimmons, W., and Holman, J. (2013). Effect of corticosteroid withdrawal on tacrolimus and mycophenolate mofetil exposure in a randomized multicenter study. American Journal of Transplantation, 13(2), 474–484.

Stemer, G., and Lemmens-Gruber, R. (2010). Clinical pharmacy services and solid organ transplantation: A literature review. Pharmacy World and Science, 32, 7–18.

Takahashi, K., Yano, I., Fukuhara, Y., Katsura, T., Takahashi, T., Ito, N., Yamamoto, S., Ogawa, O., and Inui, K. (2007). Distinct effects of omeprazole and rabeprazole on the tacrolimus blood concentration in a kidney transplant recipient. Drug Metabolism and Pharmacokinetics, 22(6), 441–444.

Undre, N. A., and Schäfer, A. (1998). Factors affecting the pharmacokinetics of tacrolimus in the first year after renal transplantation. European Tacrolimus Multi-centre Renal Study Group. Transplantation Proceedings, 30(4), 1261–1263.

van Gelder, T., Meziyerh, S., Swen, J. J., de Vries, A. P. J., and Moes, D. (2020). The clinical impact of the C0/D ratio and the CYP3A5 genotype on outcome in tacrolimus treated kidney transplant recipients. Frontiers in Pharmacology, 11, 1142.

Wulandari, N., Fitrianti, M., and Ningsih, N. Y. (2018). Potential drug-drug interaction and actual adverse event in hospitalized geriatric patients with chronic kidney disease. In Proceedings of the International Conference on Pharmaceutical Research and Practice, pp. 139–143. Yogyakarta, Indonesia.

Zuo, X. C., Zhou, Y. N., Zhang, B. K., Yang, G. P., Cheng, Z. N., Yuan, H., Ouyang, D. S., Liu, S. K., Barrett, J. S., Li, P. J., Liu, Z., Tan, H. Y., Guo, R., Zhou, L. Y., Xie, Y. L., Li, Z. J., Li, J., Wang, C. J., and Wang, J. L. (2013). Effect of CYP3A5*3 polymorphism on pharmacokinetic drug interaction between tacrolimus and amlodipine. Drug Metabolism and Pharmacokinetics, 28(5), 398–405.