Effect of oil palm fiber on mechanical properties of sandwich-structured glass

Main Article Content

Syarifah Fazilah Yuhari
Asmahani Awang

Abstract

The aim of this study was to develop a sandwich-structured glass using a conventional stacking method. The sandwich-structured glass comprised two facesheets of silicate glass, and the interlayer part was made up of different core elements, which are epoxy and oil palm fiber, to yield impact resistance features on the glass structure. Scanning electron microscopic image showed a modification in surface morphology of spikelet and stalks fibers, with a formation of fibrils in helical spirals and an appearance of a rougher surface after chemical treatment during extraction process. Mechanical properties of the sandwich-structured glass increased from 280.60 MPa to 402.46 MPa after the incorporation of oil palm fiber and epoxy in the interlayer part. The interlayer part acted as a platform to distribute applied stresses and enhanced the compressive strength of the glass. The generation of cracks on the glass surface varied significantly, depending on the type of fibers used as fillers and the interfacial bonding in the interlayer part of the sandwich-structured glass. The current design of sandwich-structured glass showed the desired mechanical properties and moderate appearance of glass fractures, which can be used as an impact-resistant glass in the construction field.

Downloads

Download data is not yet available.

Article Details

How to Cite
Yuhari, S. F., & Awang, A. (2023). Effect of oil palm fiber on mechanical properties of sandwich-structured glass. Science, Engineering and Health Studies, 17, 23020002. https://doi.org/10.14456/sehs.2023.2
Section
Physical sciences

References

Al-Fatlawi, A., Jármai, K., and Kovács, G. (2021). Optimization of a totally fiber-reinforced plastic composite sandwich construction of helicopter floor for weight saving, fuel saving and higher safety. Polymers, 13(16), 2735.

Alsubari, S., Zuhri, M. Y. M., Sapuan, S. M., Ishak, M. R., Ilyas, R. A., and Asyraf, M. R. M. (2021). Potential of natural fiber reinforced polymer composites in sandwich structures: A review on its mechanical properties. Polymers, 13(3), 423.

Ameur, M. B., Mahi, A. E., Rebiere, J-L., Gimenez, I., Beyaoui, M., Abdennadher, M., and Haddar, M. (2019). Investigation and identification of damage mechanisms of unidirectional carbon/flax hybrid composites using acoustic emission. Engineering Fracture Mechanics, 216, 106511.

Ashby, M. F. (2011). Chapter 10 - Case Studies: Material and Shape. In Materials Selection in Mechanical Design, 4th, United Kingdom: Elsevier, pp. 277–297.

Ashraf, W., Ishak, M. R., Zuhri, M. Y. M., Yidris, N., and Ya’acob, A. M. (2021). Experimental investigation on the mechanical properties of a sandwich structure made of flax/glass hybrid composite facesheet and honeycomb core. International Journal of Polymer Science, 2021, 8855952.

Balaganesan, G., Kumar, V. A., Khan, V. C., and Srinivasan, S. M. (2017). Energy-absorbing capacity of polyurethane/sic/glass-epoxy laminates under impact loading. Journal of Engineering Materials and Technology, 139(2), 021008.

Bichang’a, D. O., Aramide, F. O., Oladele, I. O., and Alabi, O. O. (2022). A review on the parameters affecting the mechanical, physical, and thermal properties of natural/synthetic fibre hybrid reinforced polymer composites. Advances in Materials Science and Engineering, 2022, 7024099.

Bradt, R. C. (2011). The fractography and crack patterns of broken glass. Journal of Failure. Analysis and Prevention, 11, 79–96.

Chaiwong, W., Samoh, N., Eksomtramage, T., and Kaewtatip. K. (2019). Surface-treated oil palm empty fruit bunch fiber improved tensile strength and water resistance of wheat gluten-based bioplastic. Composited Part B: Engineering, 176, 107331.

Chew, T. L., and Bhatia, S. (2008). Catalytic process towards to production of biofuels in a palm oil and oil palm biomass-based bio refinery. Bioresource Technology, 99(17), 7911–7922.

Craven, J. P., Baker, F. S., Thiel, B. L., and Donald, A. M. (2022). Consequences of positive ions upon imaging in low vacuum scanning electron microscopy. Journal of Microscopy, 205(1), 96–105.

Dousti, M. R., Ghassemi, P., Sahar, M. R., and Mahraz, Z. A. (2014). Chemical durability and thermal stability of Er3+-doped zinc tellurite glass containing silver nanoparticles. Chalcogenide Letters, 11(3), 111–119.

Ehrburger, P., and Donnet, J. B. (1980). Interface in composite materials. Philosophical Transactions of the Royal Society of London. Series A, 294, 495–505.

Fidelis, M. E. A., Pereira, T. V. C., Gomes, O. F. M., Silva, F. A., and Filho, R. D. T. (2013). The effect of fiber morphology on the tensile strength of natural fibers. Journal of Materials Research and Technology, 2(2), 149–157.

Ghoshal, S. K., Awang, A., Sahar, M. R., Amjad, R. J., and Dousti, M. R. (2013). Spectroscopic and structural properties of TeO2-ZnO-Na2O-Er2O3-Au glasses. Chalcogenide Letters, 10(10), 411–420.

Goldstein, J. I., Newbury, D. E., Echlin, P., Joy, D. C., Fiori, C., and Lifshin, E. (1981). Electron-Beam-Specimen Interactions. In Scanning Electron Microscopy and X-ray Microanalysis, Boston, MA: Springer, pp. 53–122.

Gotzinger, R., Hill, M., Schabel, S., and Schneider, J. (2021). Glass-paper-laminates: examination of manufacturing methods, properties and discussion of potentials. Glass Structures & Engineering, 6, 119–128.

Guo, Y., Gao, G., Li, M., Hu, L., and Zhang, J. (2012). Er3+-doped fluoro-tellurite glass: A new choice for 2.7 μm lasers. Materials Letters. 80, 56–58.

Harshey, A., Srivastava, A., Yadav, V. K., Nigam, K., Kumar, A., and Das, T. (2017). Analysis of glass fracture pattern made by. 177 ″ (4.5 mm) caliber air rifle. Egyptian Journal of Forensic Sciences, 7(1), 1–8.

Iben, H. N., and O’Brien, J. F. (2009). Generating surface crack patterns. Graphical Models, 71, 198–208.

Ibrahim, Z., Aziz, A. A., Ramli, R., Jusoff, K., Ahmad, M., and Jamaludin, M. A. (2015). Effect of treatment on the oil content and surface morphology of oil palm (Elaeis guineensis) empty fruit bunches (EFB) fibres. Wood Research, 6(1), 157–166.

Izani, M. A. N., Paridah, M. T., Anwar, U. M. K., Nor, M. Y. M., and H’ng, P. S. (2013). Effects of fiber treatment on morphology, tensile and thermogravimetric analysis of oil palm empty fruit bunches fibers. Composites Part B: Engineering, 45(1), 1251–1257.

Jacob, M., Thomas, S., and Varughese, K. T. (2004). Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites. Composites Science and Technology, 64(7-8), 955–965.

Jarmakani, H., Maddox, B., Wei, C. T., Kalantar, D., and Meyers, M. A. (2010). Laser shock-induced spalling and fragmentation in vanadium. Acta Materialia, 58(14), 4604–4628.

Khalil, H. P. S. A., Alwani, M. S., Ridzuan, R., Kamarudin, H., and Khairul, A. (2008). Chemical composition, morphological characteristics, and cell wall structure of Malaysian oil palm fibers. Polymer-Plastics Technology and Engineering, 47(3), 273–280.

Komorek, A., Przybylek, P., Szczepaniak, R., Godzimirski, J., Roskowicz, M., and Imilowski, S. (2022). The influence of low-energy impact loads on the properties of the sandwich composite with a foam core. Polymers, 14(8), 1566.

Krauklis, A. E., and Echtermeyer, A. T. (2018). Mechanism of yellowing: Carbonyl formation during hygrothermal aging in a common amine epoxy. Polymers, 10(9), 1017.

Lascano, D., Guillen-Pineda, R., Quiles-Carrillo, L., Ivorra-Martinez, J., Balart, R., Montanes, N., and Boronat, T. (2021). Manufacturing and characterization of highly environmentally friendly sandwich composites from polylactide cores and flax-polylactide faces. Polymers, 13(3), 342.

Law, K-N., Daud, W. R. W., and Ghazali, A. (2007). Morphological and chemical nature of fiber strands of oil palm empty-fruit-bunch (OPEFB). BioResources, 2(3), 351–362.

Lee, C. H., Khalina, A., and Lee, S. H. (2021). Importance of interfacial adhesion condition on characterization of plant-fiber-reinforced polymer composites: A review. Polymers, 13(3), 438.

Licari, J. J., and Swanson, D. W. (2011). Chapter 3 - Chemistry, Formulation, and Properties of Adhesives. In Adhesives Technology for Electronic Applications: Materials, Processing, Reliability, 2nd, United Kingdom: Elsevier, pp. 75–141.

Mahraz, Z. A. S., Sahar, M. R., and Ghoshal, S. K. (2014). Improved chemical durability and thermal stability of zinc boro-tellurite glass. Chalcogenide Letters, 11(9), 453–460.

Nafu, Y. R., Foba-Tendo, J., Njeugna, E., Oliver, G., and Cooke, K. O. (2015). Extraction and characterization of fibres from the stalk and spikelets of empty fruit bunch. Journal of Applied Chemistry, 2015, 750818.

Pai, A. R., and Jagtap, R. N. (2015). Surface morphology & mechanical properties of some unique natural fiber reinforced polymer composites-A review. Journal of Materials and Environmental Science, 6(4), 902–917.

Paul, A. (1982). Chemical Durability of Glass. In Chemistry of Glasses, Dordrecht, Berlin: Springer, pp. 108–147.

Popovici, I. C., and Lupascu, N. (2012). Chemical durability of soda-lime glass in aqueous acidic solutions. Ovidius University Annals of Chemistry, 23(1), 128–132.

Puasa, N. A., Ahmad, S. A., Zakaria, N. N., Shaharuddin, N. A., Khalil, K. A., Azmi, A. A., Gomez-Fuentes, C., Merican, F., Zulkharnain, A., Kok, Y-Y., and Wong, C-Y. (2022). Utilisation of oil palm’s empty fruit bunch spikelets for oil-spill removal. Agronomy, 12(2), 535.

Rajak, D. K., Pagar, D. D., Menezes, P. L., and Linul, E. (2019). Fiber-reinforced polymer composites: Manufacturing, properties, and applications. Polymers, 11(10), 11.

Rubino, F., Nistico, A., Tucci, F., and Carlone, P. (2020). Marine application of fiber reinforced composites: A review. Journal of Marine Science and Engineering, 8(1), 26.

Saba, N., Tahir, P. M., Abdan, K., and Ibrahim, N. A. (2016). Fabrication of epoxy nanocomposites from oil palm nano filler: Mechanical and morphological properties. BioResources, 11(3), 7721–7736.

Shankar, P. S., Reddy, K. T., and Sekhar, V. C. (2013). Mechanical performance and analysis of banana fiber reinforced epoxy composites. International Journal of Recent Trends in Mechanical Engineering, 1, 1–10.

Szewczak, A. (2021). Influence of epoxy glue modification on the adhesion of CFRP tapes to concrete surface. Materials, 14(21), 6339.

Tamanna, T. A., Belal, S. A., Shibly, M. A. H., and Khan, A. N. (2021). Characterization of a new natural fiber extracted from Corypha taliera fruit. Scientific Reports, 11(1), 7622.

Tanoglu, M., and Seyhan, A. T. (2003). Compressive mechanical behaviour of E-glass/polyester composite laminates tailored with a thermoplastic preforming binder. Materials Science and Engineering: A, 363(1–2), 335-344.

Tiwari, N., Harshey, A., Das, T., Abhyankar, S., Yadav, V. K., Nigam, K., Anand, V. R., and Srivastava, A. (2019). Evidential significance of multiple fracture patterns on the glass in forensic ballistics. Egyptian Journal of Forensic Sciences, 9(1), 1–5.

Vitalis, D., Veer, F., and Oikonomopoulou, F. (2018). Design and experimental testing of all glass sandwich panels: An experimental and numerical study for the glass floors of the Acropolis museum. In Challenging Glass 6-Conference Proceedings on Architectural and Structural Applications of Glass Vol. 6 (Louter, C., Bos, F., Belis, J., Veer, F., and Nijsse, R., Eds.), pp. 251–270. Delft: Delft University of Technology.

Wang, F., Lu, M., Zhou, S., Lu, Z., and Ran, S. (2019). Effect of fiber surface modification on the interfacial adhesion and thermo-mechanical performance of unidirectional epoxy-based composites reinforced with bamboo fibers. Molecules, 24(15), 2682.

Wu, Z., Liu, W., Wang, L., Fang, H., and Hui, D. (2014). Theoretical and experimental study of foam-filled lattice composite panels under quasi-static compression loading. Composites Part B: Engineering, 60, 329–340.