Molecular docking study of co-trimoxazole against SARS-CoV-2 main protease and RNA-dependent RNA polymerase: An in silico approach

Main Article Content

Nommanudien Naibkhil
Ahmad Tamim Ghafari

Abstract

The coronavirus disease 2019 (COVID-19) pandemic, driven by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused significant morbidity and mortality worldwide. Although various therapeutic options are being explored, there is still a need for effective treatments. Co-trimoxazole, a broad-spectrum antibiotic, has shown promising results in clinical studies in patients with COVID-19; however, its direct antiviral activity remains unclear. Thus, this study aimed to evaluate the direct effect of co-trimoxazole on SARS-CoV-2 using computational approaches. The molecular interactions for co-trimoxazole were analyzed against two vital SARS-CoV-2 proteins, the main protease (Mpro) and the RNA-dependent RNA polymerase (RdRp), using AutoDock Vina. Our findings reveal that both components of co-trimoxazole, sulfamethoxazole, and trimethoprim, exhibit good binding affinities with Mpro and RdRp, implying their potential inhibitory effects on viral replication with binding energies of < - 6 kcal/mol, which were close to reference drugs. This suggests that co-trimoxazole may offer therapeutic benefits for COVID-19 patients, beyond its ability to reduce inflammation and secondary infections. More clinical studies are warranted to investigate its safety and potential as a treatment option for COVID-19.

Downloads

Download data is not yet available.

Article Details

How to Cite
Naibkhil, N., & Ghafari, A. T. (2024). Molecular docking study of co-trimoxazole against SARS-CoV-2 main protease and RNA-dependent RNA polymerase: An in silico approach. Science, Engineering and Health Studies, 18, 24050012. https://doi.org/10.69598/sehs.18.24050012
Section
Health sciences

References

Ahmad, J., Ikram, S., Ahmad, F., Rahman, I., and Mushtaq, M. (2020). SARS-CoV-2 RNA dependent RNA polymerase (RdRp) - A drug repurposing study. Heliyon, 6(7), e04502.

Al-Kuraishy, H. M, Al-Gareeb, A. I., and Al-Buhadily, A. K. (2020). Co-trimoxazole and teicoplanin in the management of Covid-19: Pleiotropic effects, shadows and lights. Current Medical and Drug Research, 4(2), 210.

Badri, M., Ehrlich, R., Wood, R., and Maartens, G. (2001). Initiating co-trimoxazole prophylaxis in HIV-infected patients in Africa: An evaluation of the provisional WHO/UNAIDS recommendations. AIDS, 15(9), 1143– 1148.

Bourke, C., Gough, E., Pimundu, G., Shonhai, A., Berejena, C., Terry, L., Baumard, L., Choudhry, N., Karmali, Y., Bwakura-Dangarembizi, M., Musiime, V., Lutaakome, J., Kekitiinwa, A., Mutasa, K., Szubert, A. J., Spyer, M. J., Deayton, J. R., Glass, M., Geum, H. M., Pardieu, C., Gibb, D. M., Klein, N., Edens, T. J., Walker, A. S., Manges, A. R., and Prendergast, A. J. (2019). Cotrimoxazole reduces systemic inflammation in HIV infection by altering the gut microbiome and immune activation. Science Translational Medicine, 11(486), eaav0537.

Cheng, W., Wu, Y., Wen, Y., Ma, Y., Zhao, D., Dou, Z., Zhang, W., Bulterys, M., and Zhang, F. (2015). Cotrimoxazole prophylaxis and antiretroviral therapy: An observational cohort study in China. Bulletin of the World Health Organization, 93(3), 152–160.

Gao, Y., Li, T., Han, M., Li, X., Wu, D., Xu, Y., Zhu, Y., Liu, Y., Wang, X., and Wang, L. (2020). Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. Journal of Medical Virology, 97(7), 791–796.

Huang, I., and Pranata, R. (2020). Lymphopenia in severe coronavirus disease-2019 (COVID-19): Systematic review and meta-analysis. Journal of Intensive Care, 8, 36.

Kinghorn, G. R., Abeywickreme, I., Jeavons, M., Rowland, M., Barton, I., Al-hasani, G., Potter, C. W., and Hickmott, E. (1986). Efficacy of oral treatment with acyclovir and co-trimoxazole in first episode genital herpes. Sexually Transmitted Infections, 62(1), 33–37.

Kyosiimire-Lugemwa, J., Anywaine, Z., Abaasa, A., Levin, J., Gombe, B., Musinguzi, K., Kaleebu, P., Grosskurth, H., Munderi, P., and Pala, P. (2020). Effect of stopping cotrimoxazole preventive therapy on microbial translocation and inflammatory markers among human immunodeficiency virus-infected Ugandan adults on antiretroviral therapy: The COSTOP trial immunology substudy. The Journal of Infectious Diseases, 222(3), 381–390.

Liu, Q. Q., Cheng, A., Wang, Y., Li, H., Hu, L., Zhao, X., Wang, T., and He, F. (2020). Cytokines and their relationship with the severity and prognosis of coronavirus disease 2019 (COVID-19): A retrospective cohort study. BMJ Open, 10(11), e04147.

Liu, Y., Yang, Y., Zhang, C., Huang, F., Wang, F., Yuan, J., Wang, Z., Li, J., Li, J., Feng, C., Zhang, Z., Wang, L., Ling Peng, L., Chen, L., Qin, Y., Zhao, D., Tan, S., Yin, L., Xu, J., Zhou, C., Jiang, C., and Liu, L. (2020). Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Science China Life Science, 63(3), 364–374.

Lv, Z., Cano, K. E., Jia, L., Drag, M., Huang, T. T., and Olsen, S. K. (2022). Targeting SARS-CoV-2 proteases for COVID-19 antiviral development. Frontiers in Chemistry, 9, 819165.

Manyando, C., Njunju, E. M., D'Alessandro, U., and Van Greertruyden, J.-P. (2013). Safety and efficacy of co-trimoxazole for treatment and prevention of Plasmodium falciparum malaria: A systematic review. PLOS ONE, 8(2), e56916.

Mengist, H. M., Dilnessa, T., and Jin, T. (2021). Structural basis of potential inhibitors targeting SARS-CoV-2 main protease. Frontiers in Chemistry, 9, 622898.

Mermin, J., Lule, J., Ekwaru, J. P., Malamba, S., Downing, R., Ransom, R., Kaharuza, F., Culver, D., Kizito, F., Bunnell, R., Kigozi, A., Nakanjako, D., Wafula, W., and Quick, R. (2004). Effect of co-trimoxazole prophylaxis on morbidity, mortality, CD4-cell count, and viral load in HIV infection in rural Uganda. The Lancet, 364(9443) 1428–1434.

Naibkhil, N., and Naibkhil, A. (2020). The advantageous effects of ACE-inhibitors and angiotensin-receptor blockers on COVID-19 patients. International Journal of Advanced Academic Studies, 2(2), 27–31.

Quadery, S. R., John, T., Samuel, T., Ramanna, S., Chattopadhyay, G., Medveczky, T., Malapanjudi, C., A. Sodha, A., Lawrence, R., Dutta, S., and Varney, V. A. (2020). The beneficial effects of oral trimethoprim or cotrimoxazole in patients with severe COVID-19: A case series. SSRN Electronic Journal, 2020, 3626443.

Quadery, S. R., John, T., Sinha, P., Bhattacharjee, M., Bose, S., Ghosh, U. C., Bhattacharyya, B., Tripathi, S. K., and Saha, B. (2022). Cotrimoxazole in hospitalised patients with severe COVID-19 – interim results from the CoTroxCov study. European Respiratory Journal, 60(suppl 66), 1544.

Rozin, A., Schapira, D., Braun-Moscovici, Y., and Nahir, A. M. (2002). Cotrimoxazole treatment for rheumatoid arthritis. Seminars in Arthritis and Rheumatism, 31(2), 133–141.

Ruan, Q., Yang, K., Wang, W., Jiang, L., and Song, J. (2020). Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Medicine, 46(5), 846–848.

Salaza-Gonzalez, J. F., Martinez-Maza, O., Nishanian, P., Aziz, N., Shen, L. P., Grosser, S., Taylor, J., Detels, R., and Fahey, J. L. (1998). Increased immune activation precedes the inflection point of CD4 T Cells and the increased serum virus load in human immunodeficiency virus infection. The Journal of Infectious Diseases, 178(2), 423-430.

Seig, S. F., Mitchem, J. B., Bazdar, D. A., and Lederman, M. M. (2002). Close link between CD4+ and CD8+ T cell proliferation defects in patients with human immunodeficiency virus disease and relationship to extended periods of CD4+ lymphopenia. The Journal of Infectious Diseases, 185(10), 1401–1416.

Singh, S., Kumar, P., and John, T. (2021). Role of co-trimoxazole in patients with COVID-19 with acute respiratory failure requiring non-invasive ventilation: A single center experience. American Journal of Respiratory and Critical Care Medicine, 203, A2617.

Tan, L., Wang, Q., Zhang, D., Ding, J., Huang, Q., Tang, Y.-Q., Wang, Q., and Miao, H. (2020). Lymphopenia predicts disease severity of COVID-19: A descriptive and predictive study. Signal Transduction and Targeted Therapy, 5(1), 33.

Tonelli, M., Naesens, L., Gazzarrini, S., Santucci, M., Cichero, E., Tasso, B., Moroni, A., Costi, M. P., and Loddo, R. (2017). Host dihydrofolate reductase (DHFR)-directed cycloguanil analogues endowed with activity against influenza virus and respiratory syncytial virus. European Journal of Medicinal Chemistry, 135, 467–478.

Vijayakumar, M., Janani, B., Kannappan, P., Renganathan, S., Al-Ghamdi, S., Alsaidan, M., Abdelaziz, M. A., Mohideen, A. P., Shahid, M., and Ramesh, T. (2022). In silico identification of potential inhibitors against main protease of SARS-CoV-2 6LU7 from Andrographis panniculata via molecular docking, binding energy calculations and molecular dynamics simulation studies. Saudi Journal of Biological Sciences, 29(1), 18–29.

WHO. (2006). Guidelines on Co-trimoxazole Prophylaxis for HIV-related Infections among Children, Adolescents and Adults: Recommendations for a Public Health Approach, Geneva: World Health Organization, pp 8–14.

WHO. (2023). WHO COVID-19 dashboard. World Health Organization. [Online URL: https://covid19.who.int/] accessed on August 7, 2023.

Woods, W. G., Daigle, A. E., Hutchinson, R. J., and Robison, L. L. (1984). Myelosuppression associated with co-trimoxazole as a prophylactic antibiotic in the maintenance phase of childhood acute lymphocytic leukemia. The Journal of Pediatrics, 105(4), 639–644.

Yang, R., Gui, X., and Xiong, Y. (2020). Comparison of clinical characteristics of patients with asymptomatic vs symptomatic coronavirus disease 2019 in Wuhan, China. JAMA Network Open, 3(5), e2010182.

Zhang, X., Tan, Y., Ling, Y., Lu, G., Liu, F., Yi, Z., Jia, X., Wu, M., Shi, S., Xu, S., Chen, J., Wang, W., Chen, B., Jiang, L., Yu, S., Lu, J., Wang, J., Xu, M., Yuan, Z., Zhang, Q., Zhang, X., Zhao, G., Wang, S., Chen, S., and Lu, H. (2020). Viral and host factors related to the clinical outcome of COVID-19. Nature, 583, 437–440.

Zhao, Q., Meng, M., Kumar, R., Wu, Y., Huang, J., Deng, Y., Weng, Z., and Yang, L. (2020). Lymphopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A systemic review and meta-analysis. International Journal of Infection Diseases, 96, 131–135.

Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., Xiang, J., Wang, Y., Song, B., Gu, X., Guan, L., Wei, Y., Li, H., Wu, X., Xu, J., Tu, S., Zhang, Y., Chen, H., and Cao, B. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. The Lancet, 395(10229), 1054–1062.