Predictive models of PM2.5 concentration with aerosol optical depth and meteorological data in Bangkok area using machine learning techniques

Main Article Content

Ikwan Bensalam
Salang Musikasuwan
Rattikan Saelim

Abstract

Air pollution, particularly fine particulate matter (PM2.5), is a significant global concern due to its adverse effects on human health and the environment. In response to this challenge, this study aimed to develop and compare machine learning models for predicting PM2.5 concentrations, focusing on two monitoring stations in Bangkok. A comprehensive dataset integrating meteorological data and aerosol optical depth (AOD) information was utilized. The models employed in this research included multiple linear regression (MLR), random forest (RF), and support vector machine (SVM). Notably, the SVM model demonstrated superior predictive performance for ambient stations. The findings underscore the importance of tailoring the machine learning method to the specific monitoring station type. Furthermore, the inclusion of influential gas variables such as NO2, SO2, CO, and O3 significantly enhanced the models' predictive capabilities. Fine-tuning hyperparameters further improved model performance. In conclusion, this research highlights the effectiveness of machine learning models in predicting PM2.5 concentrations, with important implications for air quality management in urban environments.

Downloads

Download data is not yet available.

Article Details

How to Cite
Bensalam, I., Musikasuwan, S., & Saelim, R. (2025). Predictive models of PM2.5 concentration with aerosol optical depth and meteorological data in Bangkok area using machine learning techniques. Science, Engineering and Health Studies, 19, 25020001. https://doi.org/10.69598/sehs.19.25020001
Section
Physical sciences

References

Amnuaylojaroen, T. (2022). Prediction of PM2.5 in an urban area of Northern Thailand using multivariate linear regression model. Advances in Meteorology, 2022(1), Article 3190484. https://doi.org/10.1155/2022/3190484

Brauer, M., Freedman, G., Frostad, J., van Donkelaar, A., Martin, R. V., Dentener, F., van Dingenen, R., Estep, K., Amini, H., Apte, J. S., Balakrishnan, K., Barregard, L., Broday, D., Feigin, V., Ghosh, S., Hopke, P. K., Knibbs, L. D., Kokubo, Y., Liu, Y., . . . Cohen, A. (2016). Ambient air pollution exposure estimation for the Global Burden of Disease 2013. Environmental Science & Technology, 50(1), 79–88. https://doi.org/10.1021/acs.est.5b03709

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324

Croft, D. P., Zhang, W., Lin, S., Thurston, S. W., Hopke, P. K., Masiol, M., Squizzato, S., van Wijngaarden, E., Utell, M. J., & Rich, D. Q. (2019). The association between respiratory infection and air pollution in the setting of air quality policy and economic change. Annals of the American Thoracic Society, 16(3), 321–330. https://doi.org/10.1513/AnnalsATS.201810-691OC

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning (2nd ed.). Springer.

Health Effects Institute. (2004). Health effects of outdoor air pollution in developing countries of Asia (Special Report 15 Executive Summary). https://www.healtheffects.org/system/files/SpecialReport15Summ.pdf

Hodson, T. O. (2022). Root-mean-square error (RMSE) or mean absolute error (MAE): When to use them or not. Geoscientific Model Development, 15(14), 5481–5487. https://doi.org/10.5194/gmd-15-5481-2022

Huang, K., Xiao, Q., Meng, X., Geng, G., Wang, Y., Lyapustin, A., Gu, D., & Liu, Y. (2018). Predicting monthly high-resolution PM2.5 concentrations with random forest model in the North China Plain. Environmental Pollution, 242(Part A), 675–683. https://doi.org/10.1016/j.envpol.2018.07.016

Liu, B.-C., Binaykia, A., Chang, P.-C., Tiwari, M. K., & Tsao, C.-C. (2017). Urban air quality forecasting based on multi-dimensional collaborative support vector regression (SVR): A case study of Beijing-Tianjin-Shijiazhuang. PLOS ONE, 12(7), Article e0179763. https://doi.org/10.1371/journal.pone.0179763

Lohmann, P. M., Probst, B., Gsottbauer, E., & Kontoleon, A. (2024). High levels of air pollution reduce team performance. Journal of Economic Psychology, 101, Article 102705. https://doi.org/10.1016/j.joep.2024.102705

Mehta, U., Dey, S., Chowdhury, S., Ghosh, S., Hart, J. E., & Kurpad, A. (2021). The association between ambient PM2.5 exposure and anemia outcomes among children under five years of age in India. Environmental Epidemiology, 5(1), Article e125. https://doi.org/10.1097/EE9.0000000000000125

Minh, V. T. T., Tin, T. T., & Hien, T. T. (2021). PM2.5 forecast system by using machine learning and WRF model, a case study: Ho Chi Minh City, Vietnam. Aerosol and Air Quality Research, 21(12), Article 210108. https://doi.org/10.4209/aaqr.210108

Müller, K.-R., Smola, A. J., Rätsch, G., Schölkopf, B., Kohlmorgen, J., & Vapnik, V. (1997). Predicting time series with support vector machines. In W. Gerstner, A. Germond, M. Hasler, & J.-D. Nicoud (Eds.), Lecture Notes in Computer Science, Volume 1327 (pp. 999–1004). Springer. https://doi.org/10.1007/BFb0020283

Notification of the National Environment Board. (2022, July 8). Royal Thai Government Gazette. No. 139 Special Section 163 D. pp. 21–22. https://www.ratchakitcha.soc.go.th/DATA/PDF/2565/E/163/T_0021.PDF [in Thai]

Peng-in, B., Sanitluea, P., Monjatturat, P., Boonkerd, P., & Phosri, A. (2022). Estimating ground-level PM2.5 over Bangkok Metropolitan region in Thailand using aerosol optical depth retrieved by MODIS. Air Quality, Atmosphere & Health, 15(11), 2091–2102. https://doi.org/10.1007/s11869-022-01238-4

Pope, C. A., Ezzati, M., & Dockery, D. W. (2009). Fine-particulate air pollution and life expectancy in the United States. The New England Journal of Medicine, 360(4), 376–386. https://doi.org/10.1056/NEJMsa0805646

Shaddick, G., Thomas, M. L., Mudu, P., Ruggeri, G., & Gumy, S. (2020). Half the world’s population are exposed to increasing air pollution. npj Climate and Atmospheric Science, 3, Article 23. https://doi.org/10.1038/s41612-020-0124-2

Thongphunchung, K., Phosri, A., Sihabut, T., & Patthanaissaranukool, W. (2021). Short-term effects of particulate matter on outpatient department visits for respiratory diseases among children in the Bangkok Metropolitan Region: A case-crossover study. Air Quality, Atmosphere & Health, 14(11), 1785–1795. https://doi.org/10.1007/s11869-021-01053-3

World Health Organization. (2021). WHO global air quality guidelines: Particulate matter (PM2.5 and PM₁₀), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. https://iris.who.int/handle/10665/345329

Zamani Joharestani, M., Cao, C., Ni, X., Bashir, B., & Talebiesfandarani, S. (2019). PM2.5 prediction based on random forest, XGBoost, and deep learning using multisource remote sensing data. Atmosphere, 10(7), Article 373. https://doi.org/10.3390/atmos10070373

Zhang, X., Kang, J., Chen, H., Yao, M., & Wang, J. (2018). PM2.5 meets blood: In vivo damages and immune defense. Aerosol and Air Quality Research, 18(2), 456–470. https://doi.org/10.4209/aaqr.2017.05.0167