Extraction, characterization and wound healing property of chitosan extracted from Penaeus indicus shells on mouse fibroblast (L929) cell line

Main Article Content

Sivalingam Valliappan Meenakshi
Anwar Nawaz
Raja Jagadeesh
Paul Andrew Merlin Angel
Elumalai Suganthi
Kandhasamy Sivakumar

Abstract

The current study aimed to characterize the properties of chitosan, extracted from Penaeus indicus, on the mouse fibroblast cell line (L929) for wound healing purposes. Chitosan is well known for its wide variety of biological characteristics. Shrimp exoskeletons were obtained from a local fish market in Chengalpattu, Tamil Nadu. Chitosan was extracted through demineralization, deproteination, and deacetylation processes. It was characterized using X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. The characterized chitosan was processed into nanoparticles and evaluated for cytotoxicity on cell lines. The cell line was treated with concentrations ranging from 25 to 500 µg/mL for 4 h. The results demonstrated 99% cell viability across all concentrations. The study primarily focuses on evaluating the ability of chitosan to repair wounds. Mouse fibroblast cell lines were seeded on a microtitre plate at a density of 1×10⁵ cells per well. Results indicated that the chitosan-treated groups exhibited significantly greater wound closure, with 10% to 20% more growth compared to the control groups. These findings underscore the potential of chitosan derived from P. indicus shrimp waste as a valuable pharmaceutical compound. Such applications could significantly contribute to the nation’s socioeconomic development.

Downloads

Download data is not yet available.

Article Details

How to Cite
Meenakshi, S. V., Nawaz, A., Jagadeesh, R., Merlin Angel, P. A., Suganthi, E., & Sivakumar, K. (2025). Extraction, characterization and wound healing property of chitosan extracted from Penaeus indicus shells on mouse fibroblast (L929) cell line. Science, Engineering and Health Studies, 19, 25050022. https://doi.org/10.69598/sehs.19.25050022
Section
Health sciences

References

Abo Elsoud, M. M., & El Kady, E. M. (2019). Current trends in fungal biosynthesis of chitin and chitosan. Bulletin of the National Research Centre, 43(1), Article 59. https://doi.org/10.1186/s42269-019-0105-y

Ahmad, M., Ahmed, S., Swami, B. L., & Ikram, S. (2015). Preparation and characterization of antibacterial thiosemicarbazide chitosan as efficient Cu(II) adsorbent. Carbohydrate Polymers, 132, 164–172. https://doi.org/10.1016/j.carbpol.2015.06.034

Ahmed, S., & Ikram, S. (2016). Chitosan based scaffolds and their applications in wound healing. Achievements in the Life Sciences, 10(1), 27–37. https://doi.org/10.1016/j.als.2016.04.001

Anitha, A., Rani, V. D., Krishna, R., Sreeja, V., Selvamurugan, N., Nair, S., Tamura, H., & Jayakumar, R. (2009). Synthesis, characterization, cytotoxicity and antibacterial studies of chitosan, O-carboxymethyl and N,O-carboxymethyl chitosan nanoparticles. Carbohydrate Polymers, 78(4), 672–677. https://doi.org/10.1016/j.carbpol.2009.05.028

Anjaneyulu, U., Swaroop, V. K., & Vijayalakshmi, U. (2016). Preparation and characterization of novel Ag doped hydroxyapatite–Fe3O4–chitosan hybrid composites and in vitro biological evaluations for orthopaedic applications. RSC Advances, 6(13), 10997–11007. https://doi.org/10.1039/c5ra21479c

Azad, A. K., Sermsintham, N., Chandrkrachang, S., & Stevens, W. F. (2004). Chitosan membrane as a wound‐healing dressing: Characterization and clinical application. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 69B(2), 216–222. https://doi.org/10.1002/jbm.b.30000

Bagheri, M., Validi, M., Gholipour, A., Makvandi, P., & Sharifi, E. (2022). Chitosan nanofiber biocomposites for potential wound healing applications: Antioxidant activity with synergic antibacterial effect. Bioengineering & Translational Medicine, 7(1), Article e10254. https://doi.org/10.1002/btm2.10254

Basha, R. Y., Kumar, T. S. S., Selvaraj, R., & Doble, M. (2018). Silver loaded nanofibrous Curdlan mat for diabetic wound healing: An in vitro and in vivo study. Macromolecular Materials and Engineering, 303(9), Article 1800234. https://doi.org/10.1002/mame.201800234

Cannella, V., Altomare, R., Leonardi, V., Russotto, L., Di Bella, S., Mira, F., & Guercio, A. (2020). In vitro biocompatibility evaluation of nine dermal fillers on L929 cell line. BioMed Research International, 2020(1), Article 8676343. https://doi.org/10.1155/2020/8676343

Cardenas, G., & Miranda, S. P. (2004). FTIR and TGA studies of chitosan composite films. Journal of the Chilean Chemical Society, 49(4), 291–295. https://doi.org/10.4067/s0717-97072004000400005

Dai, T., Tanaka, M., Huang, Y., & Hamblin, M. R. (2011). Chitosan preparations for wounds and burns: Antimicrobial and wound-healing effects. Expert Review of Anti-infective Therapy, 9(7), 857–879. https://doi.org/10.1586/eri.11.59

De Bari, C., Dell’Accio, F., Tylzanowski, P., & Luyten, F. P. (2001). Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis & Rheumatism, 44(8), 1928–1942. https://doi.org/10.1002/1529-0131(200108)44:8<1928::AID-ART331>3.0.CO;2-P

Espinosa-Andrews, H., Sandoval-Castilla, O., Vázquez-Torres, H., Vernon-Carter, E. J., & Lobato-Calleros, C. (2010). Determination of the gum arabic–chitosan interactions by Fourier transform infrared spectroscopy and characterization of the microstructure and rheological features of their coacervates. Carbohydrate Polymers, 79(3), 541–546. https://doi.org/10.1016/j.carbpol.2009.08.040

Fahimirad, S., Abtahi, H., Satei, P., Ghaznavi-Rad, E., Moslehi, M., & Ganji, A. (2021). Wound healing performance of PCL/chitosan based electrospun nanofiber electrosprayed with curcumin loaded chitosan nanoparticles. Carbohydrate Polymers, 259, Article 117640. https://doi.org/10.1016/j.carbpol.2021.117640

Frigaard, J., Jensen, J. L., Galtung, H. K., & Hiorth, M. (2022). The potential of chitosan in nanomedicine: An overview of the cytotoxicity of chitosan based nanoparticles. Frontiers in Pharmacology, 13, Article 880377. https://doi.org/10.3389/fphar.2022.880377

Hou, B., Qi, M., Sun, J., Ai, M., Ma, X., Cai, W., Zhou, Y., Ni, L., Hu, J., Xu, F., & Qiu, L. (2020). Preparation, characterization and wound healing effect of vaccarin-chitosan nanoparticles. International Journal of Biological Macromolecules, 165(Part B), 3169–3179. https://doi.org/10.1016/j.ijbiomac.2020.10.182

Iber, B. T., Kasan, N. A., Torsabo, D., & Omuwa, J. W. (2021). A review of various sources of chitin and chitosan in nature. Journal of Renewable Materials, 10(4), 1097–1123. https://doi.org/10.32604/jrm.2022.018142

Ibitoye, E. B., Lokman, I. H., Hezmee, M. N. M., Goh, Y. M., Zuki, A. B. Z., & Jimoh, A. A. (2017). Extraction and physicochemical characterization of chitin and chitosan isolated from house cricket. Biomedical Materials, 13(2), Article 025009. https://doi.org/10.1088/1748-605x/aa9dde

Kang, Y. O., Yoon, I.-S., Lee, S. Y., Kim, D.-D., Lee, S. J., Park, W. H., & Hudson, S. M. (2010). Chitosan‐coated poly(vinyl alcohol) nanofibers for wound dressings. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 92B(2), 568–576. https://doi.org/10.1002/jbm.b.31554

Kanimozhi, C., Ganesan, S., Gokila, G., & Manimekalai, R. (2022). In vitro evaluation of cytotoxicity, anti-inflammatory and wound healing properties of otolith stones from pomadasys maculates. Journal of Materials Science, 57(25), 11899–11910. https://doi.org/10.1007/s10853-022-07385-4

Kasongo, K. J., Tubadi, D. J., Bampole, L. D., Kaniki, T. A., Kanda, N. J. M., & Lukumu, M. E. (2020). Extraction and characterization of chitin and chitosan from Termitomyces titanicus. SN Applied Sciences, 2(3), Article 406. https://doi.org/10.1007/s42452-020-2186-5

Keong, L. C., & Halim, A. S. (2009). In vitro models in biocompatibility assessment for biomedical-grade chitosan derivatives in wound management. International Journal of Molecular Sciences, 10(3), 1300–1313. https://doi.org/10.3390/ijms10031300

Klinkesorn, U. (2013). The role of Chitosan in emulsion formation and stabilization. Food Reviews International, 29(4), 371–393. https://doi.org/10.1080/87559129.2013.818013

Kim, M., Song, Y., Han, Y. S., Jo, Y. H., Choi, M. H., Park, Y., Kang, S. H., Kim, S., Choi, C., & Jung, W. (2017). Production of chitin and chitosan from the exoskeleton of adult two‐spotted field crickets (Gryllus bimaculatus). Entomological Research, 47(5), 279–285. https://doi.org/10.1111/1748-5967.12239

Kumar, B. S., & Rajasulochana, P. (2021). Synthesis of chitosan nano particle from chitin and its industrial and clinical application. Annals of the Romanian Society for Cell Biology, 25(4), 17484–17489.

Li, Q., Wang, W., Hu, G., Cui, X., Sun, D., Jin, Z., & Zhao, K. (2021). Evaluation of chitosan derivatives modified mesoporous silica nanoparticles as delivery carrier. Molecules, 26(9), Article 2490. https://doi.org/10.3390/molecules26092490

Liang, D., Lu, Z., Yang, H., Gao, J., & Chen, R. (2016). Novel asymmetric wettable AGNPS/chitosan wound dressing: In vitro and in vivo evaluation. ACS Applied Materials & Interfaces, 8(6), 3958–3968. https://doi.org/10.1021/acsami.5b11160

Lim, C. K., & Halim, A. S. (2010). Biomedical-grade chitosan in wound management and its biocompatibility in vitro. Biopolymers. https://doi.org/10.5772/10256

Lim, L. M., Tran, T.-T., Wong, J. J. L., Wang, D., Cheow, W. S., & Hadinoto, K. (2018). Amorphous ternary nanoparticle complex of curcumin-chitosan-hypromellose exhibiting built-in solubility enhancement and physical stability of curcumin. Colloids and Surfaces B: Biointerfaces, 167, 483–491. https://doi.org/10.1016/j.colsurfb.2018.04.049

Liu, R. (1985). Advances in shrimp culture in China. In Y. Taki, J. H. Primavera, & J. A. Llobrera (Eds.), Proceedings of the First International Conference on the Culture of Penaeid Prawns/Shrimps (p. 163). Aquaculture Department, Southeast Asian Fisheries Development Center.

Mania, S., Partyka, K., Pilch, J., Augustin, E., Cieślik, M., Ryl, J., Jinn, J., Wang, Y., Michałowska, A., & Tylingo, R. (2019). Obtaining and characterization of the PLA/chitosan foams with antimicrobial properties achieved by the emulsification combined with the dissolution of chitosan by CO2 saturation. Molecules, 24(24), Article 4532. https://doi.org/10.3390/molecules24244532

Mittal, A., Singh, A., Aluko, R. E., & Benjakul, S. (2020). Pacific white shrimp (Litopenaeus vannamei) shell chitosan and the conjugate with epigallocatechin gallate: Antioxidative and antimicrobial activities. Journal of Food Biochemistry, 45(1), Article e13569. https://doi.org/10.1111/jfbc.13569

Mohanasrinivasan, V., Mishra, M., Paliwal, J. S., Singh, S. K., Selvarajan, E., Suganthi, V., & Devi, C. S. (2013). Studies on heavy metal removal efficiency and antibacterial activity of chitosan prepared from shrimp shell waste. 3 Biotech, 4(2), 167–175. https://doi.org/10.1007/s13205-013-0140-6

Mohandas, A., Deepthi, S., Biswas, R., & Jayakumar, R. (2017). Chitosan based metallic nanocomposite scaffolds as antimicrobial wound dressings. Bioactive Materials, 3(3), 267–277. https://doi.org/10.1016/j.bioactmat.2017.11.003

Montazeri, S., Rastegari, A., Mohammadi, Z., Nazari, M., Yousefi, M., Samadi, F. Y., Najafzadeh, S., & Aghsami, M. (2023). Chitosan nanoparticle loaded by epidermal growth factor as a potential protein carrier for wound healing: In vitro and in vivo studies. IET Nanobiotechnology, 17(3), 204–211. https://doi.org/10.1049/nbt2.12116

Mosa, I. F., Abd, H. H., Abuzreda, A., Assaf, N., & Yousif, A. B. (2020). Bio-evaluation of the role of chitosan and curcumin nanoparticles in ameliorating genotoxicity and inflammatory responses in rats’ gastric tissue followed hydroxyapatite nanoparticles’ oral uptake. Toxicology Research, 9(4), 493–508. https://doi.org/10.1093/toxres/tfaa054

Muhamad, A. (2022). Chitosan oligosaccharides as a nanomaterial platform: Biological properties and applications in the biomedical and pharmaceutical fields. Makara Journal of Science, 26(4), Article 2. https://doi.org/10.7454/mss.v26i4.1337

Nawaz, R. M. A., Raiyaan, G. I. D., Sivakumar, K., & Arunachalam, K. D. (2023). Nanomedicine regulation and future prospects. In R. K. Keservani, R. K. Keshawani, & A. K. Sharma (Eds.), Advances in novel formulations for drug delivery (4th ed., pp. 67–80). Wiley. https://doi.org/10.1002/9781394167708.ch4

Ngan, L. T. K., Wang, S., Hiep, Đ. M., Luong, P. M., Vui, N. T., Đinh, T. M., & Dzung, N. A. (2014). Preparation of chitosan nanoparticles by spray drying, and their antibacterial activity. Research on Chemical Intermediates, 40(6), 2165–2175. https://doi.org/10.1007/s11164-014-1594-9

Öğretmen, Ö. Y., Karsli, B., & Çağlak, E. (2021). Extraction and physicochemical characterization of chitosan from pink shrimp (Parapenaeus longirostris) shell wastes. Tarım Bilimleri Dergisi, 28(3), 490–500. https://doi.org/10.15832/ankutbd.861909

Omar, B. A., Elmasry, R., Eita, A., Soliman, M. M., El-Tahan, A. M., & Sitohy, M. (2021). Upgrading the preparation of high-quality chitosan from Procambarus clarkii wastes over the traditional isolation of shrimp chitosan. Saudi Journal of Biological Sciences, 29(2), 911–919. https://doi.org/10.1016/j.sjbs.2021.10.014

Panchal, K., & Desai, M. (2022). Chitin: Production, purification, and characterization. In D. Amin, N. Amaresan, & S. Ray (Eds.), Biotic elicitors. springer protocols handbooks (pp. 87–99). Humana. https://doi.org/10.1007/978-1-0716-2601-6_11

Patrulea, V., Ostafe, V., Borchard, G., & Jordan, O. (2015). Chitosan as a starting material for wound healing applications. European Journal of Pharmaceutics and Biopharmaceutics, 97(Part B), 417–426. https://doi.org/10.1016/j.ejpb.2015.08.004

Paulino, A. T., Simionato, J. I., Garcia, J. C., & Nozaki, J. (2005). Characterization of chitosan and chitin produced from silkworm crysalides. Carbohydrate Polymers, 64(1), 98–103. https://doi.org/10.1016/j.carbpol.2005.10.032

Percot, A., Viton, C., & Domard, A. (2002). Optimization of chitin extraction from shrimp shells. Biomacromolecules, 4(1), 12–18. https://doi.org/10.1021/bm025602k

Raja, R., Chellaram, C., & John, A. A. (2012). Antibacterial properties of chitin from shell wastes. Indian Journal of Innovations and Developments, 1(S8), 7–11.

Reys, L. L., Silva, S. S., Oliveira, J. M., Caridade, S. G., Mano, J. F., Silva, T. H., & Reis, R. L. (2013). Revealing the potential of squid chitosan-based structures for biomedical applications. Biomedical Materials, 8(4), Article 045002. https://doi.org/10.1088/1748-6041/8/4/045002

Rhim, J., Hong, S., Park, H., & Ng, P. K. W. (2006). Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. Journal of Agricultural and Food Chemistry, 54(16), 5814–5822. https://doi.org/10.1021/jf060658h

Rodríguez-Vázquez, M., Vega-Ruiz, B., Ramos-Zúñiga, R., Saldaña-Koppel, D. A., & Quiñones-Olvera, L. F. (2015). Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. BioMed Research International, 2015(1), Article 821279. https://doi.org/10.1155/2015/821279

Salari, M., Khiabani, M. S., Mokarram, R. R., Ghanbarzadeh, B., & Kafil, H. S. (2018). Preparation and characterization of cellulose nanocrystals from bacterial cellulose produced in sugar beet molasses and cheese whey media. International Journal of Biological Macromolecules, 122, 280–288. https://doi.org/10.1016/j.ijbiomac.2018.10.136

Seenuvasan, M., Sarojini, G., & Dineshkumar, M. (2020). Recovery of chitosan from natural biotic waste. In S. Varjani, A. Pandey, E. Gnansounou, S. K. Khanal, & S. Raveendran (Eds.), Current developments in biotechnology and bioengineering (pp. 115–133). Elsevier. https://doi.org/10.1016/B978-0-444-64321-6.00006-9

Shafique, M., Sohail, M., Minhas, M. U., Khaliq, T., Kousar, M., Khan, S., Hussain, Z., Mahmood, A., Abbasi, M., Aziz, H. C., & Shah, S. A. (2020). Bio-functional hydrogel membranes loaded with chitosan nanoparticles for accelerated wound healing. International Journal of Biological Macromolecules, 170, 207–221. https://doi.org/10.1016/j.ijbiomac.2020.12.157

Singh, A., Benjakul, S., & Prodpran, T. (2019). Ultrasound‐assisted extraction of chitosan from squid pen: Molecular characterization and fat binding capacity. Journal of Food Science, 84(2), 224–234. https://doi.org/10.1111/1750-3841.14439

Suarez-Arnedo, A., Figueroa, F. T., Clavijo, C., Arbeláez, P., Cruz, J. C., & Muñoz-Camargo, C. (2020). An image J plugin for the high throughput image analysis of in vitro scratch wound healing assays. PLoS ONE, 15(7), Article e0232565. https://doi.org/10.1371/journal.pone.0232565

Tang, E., Huang, M., & Lim, L. (2003). Ultrasonication of chitosan and chitosan nanoparticles. International Journal of Pharmaceutics, 265(1–2), 103–114. https://doi.org/10.1016/s0378-5173(03)00408-3

Thai, H., Nguyen, C. T., Thach, L. T., Tran, M. T., Mai, H. D., Nguyen, T. T. T., Le, G. D., Van Can, M., Tran, L. D., Bach, G. L., Ramadass, K., Sathish, C. I., & Van Le, Q. (2020). Characterization of chitosan/alginate/lovastatin nanoparticles and investigation of their toxic effects in vitro and in vivo. Scientific Reports, 10(1) Article 909. https://doi.org/10.1038/s41598-020-57666-8

Thein-Han, W. W., Kitiyanant, Y., & Misra, R. D. K. (2008). Chitosan as scaffold matrix for tissue engineering. Materials Science and Technology, 24(9), 1062–1075. https://doi.org/10.1179/174328408x341753

Troudi, D. (2022). Effect of invasive blue crab chitosan coating on extending the shelf life and quality of fresh strawberry fruits. Icontech International Journal, 6(2), 1–9. https://doi.org/10.46291/icontechvol6iss2pp1-9

Ueno, H., Mori, T., & Fujinaga, T. (2001). Topical formulations and wound healing applications of chitosan. Advanced Drug Delivery Reviews, 52(2), 105–115. https://doi.org/10.1016/s0169-409x(01)00189-2

Varma, R., & Vasudevan, S. (2020). Extraction, characterization, and antimicrobial activity of chitosan from horse mussel modiolus modiolus. ACS Omega, 5(32), 20224–20230. https://doi.org/10.1021/acsomega.0c01903

Varun, T. K., Senani, S., Jayapal, N., Chikkerur, J., Roy, S., Tekulapally, V. B., Gautam, M., & Kumar, N. (2017). Extraction of chitosan and its oligomers from shrimp shell waste, their characterization and antimicrobial effect. Veterinary World, 10(2), 170–175. https://doi.org/10.14202/vetworld.2017.170-175

Wu, T., Zivanovic, S., Draughon, F. A., & Sams, C. E. (2004). Chitin and chitosan value-added products from mushroom waste. Journal of Agricultural and Food Chemistry, 52(26), 7905–7910. https://doi.org/10.1021/jf0492565

Xie, J., Xie, W., Yu, J., Xin, R., Shi, Z., Song, L., & Yang, X. (2021). Extraction of chitin from shrimp shell by successive two-step fermentation of Exiguobacterium profundum and Lactobacillus acidophilus. Frontiers in Microbiology, 12, Article 677126. https://doi.org/10.3389/fmicb.2021.677126

Ye, Y., Xu, Y., Liang, W., Leung, G. P. H., Cheung, K., Zheng, C., Chen, F., & Lam, J. K. W. (2013). DNA-loaded chitosan oligosaccharide nanoparticles with enhanced permeability across Calu-3 cells. Journal of Drug Targeting, 21(5), 474–486. https://doi.org/10.3109/1061186x.2013.766885

Zaghloul, E. H., & Ibrahim, H. H. (2019). Comparative study on antimicrobial activity of commercial and extracted chitin and chitosan from Marsupenaeus japonicus shells. Egyptian Journal of Aquatic Biology and Fisheries, 23(2), 291–302. https://doi.org/10.21608/ejabf.2019.31536

Zhang, J., Tan, W., Wei, L., Dong, F., Li, Q., & Guo, Z. (2019). Synthesis, characterization, and antioxidant evaluation of novel pyridylurea-functionalized chitosan derivatives. Polymers, 11(6), Article 951. https://doi.org/10.3390/polym11060951

Zhang, L., Wang, J., Zhan, B., Deng, Y., & Yan, L. (2024). Dissolving and efficient fractionation of chitin and synchronous preparation of calcium lactate from crayfish shell waste using amino acid-based deep eutectic solvents. ACS Sustainable Chemistry & Engineering, 12(4), 1548–1560. https://doi.org/10.1021/acssuschemeng.3c06594