RECSALMO: Rapid typing and characterization tool for whole genome sequencing data of Salmonella

Main Article Content

Kritchai Poonchareon
Ekachai Chukeatirote
Nuttachat Wisittipanit

Abstract

Salmonella is one of the most prevalent foodborne pathogens. Endemic events involving Salmonella now occur more frequently and must be handled efficiently and quickly. Whole genome sequencing (WGS) cost and speed have improved significantly during the past decades, with the number of bioinformatics tools based on WGS data also increasing. This research presented the “RECSALMO” tool, designed specifically to analyze Salmonella genome assemblies. This tool can quickly type and characterize a collection of Salmonella genomes, providing extensive information and assist related healthcare personnel to effectively and timely manage a Salmonella epidemic. The essential outputs of the tool include sequence-based typing comprising serotyping, MLST and cgMLST, antibiotic resistance genes with their associated classes/subclasses of antibiotic drugs, Salmonella pathogenicity islands (SPIs) from SPI-1 to SPI-17, and spacer profiles (CRISPR locus 1 and 2). Moreover, the tool generates SNP-based trees, CRISPR-based dendrograms and pie charts of serotypes and ST indexes. Due to the superior resolution, quick operational time, and low processing cost of WGS, RECSALMO is considered a practical bioinformatics tool for comprehensive and rapid examination of Salmonella genomes.

Downloads

Download data is not yet available.

Article Details

How to Cite
Poonchareon, K., Chukeatirote, E., & Wisittipanit, N. (2024). RECSALMO: Rapid typing and characterization tool for whole genome sequencing data of Salmonella. Science, Engineering and Health Studies, 18, 24030004. https://doi.org/10.69598/sehs.18.24030004
Section
Biological sciences

References

Achtman, M., Wain, J., Weill, F.-X., Nair, S., Zhou, Z., Sangal, V., Krauland, M. G., Hale, J. L., Harbottle, H., Uesbeck, A., Dougan, G., Harrison, L. H., and Brisse, S. (2012). Multilocus sequence typing and a replacement for serotyping in Salmonella enterica. PLoS Pathogens, 8(6), e1002776.

Achtman, M., Zhou, Z., Alikhan, N.-F., Tyne, W., Parkhill, J., Cormican, M., Chiou, C. S., Torpdahl, M., Litrup, E., Prendergast, D. M., Moore, J. E., Strain, S., Kornschober, C., Meinersmann, R., Uesbeck, A., Weill, F.-X., Coffey, A., Andrews-Polymenis, H., Curtiss Rd, R., and Fanning, S. (2020). Genomic diversity of Salmonella enterica - The UoWUCC 10K genomes project. Welcome Open Research, 5, 223.

Alenazy, R. (2022). Antibiotic resistance in Salmonella: Targeting multidrug resistance by understanding efflux pumps, regulators and the inhibitors. Journal of King Saud University - Science, 34(7), 102275.

Aziz, R. K., Bartels, D., Best, A. A., DeJongh, M., Disz, T., Edwards, R. A., Formsma, K., Gerdes, S., Glass, E. M., Kubal, M., Meyer, F., Olsen, G. J., Olson, R., Osterman, A. L., Overbeek, R. A., McNeil, L. K., Paarmann, D., Paczian, T., Parrello, B., … Zagnitko, O. (2008). The RAST server: Rapid annotations using subsystems technology. BMC Genomics, 9, 75.

Bland, C., Ramsey, T. L., Sabree, F., Lowe, M., Brown, K., Kyrpides, N. C., and Hugenholtz, P. (2007). CRISPR recognition tool (CRT): A tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinformatics, 8, 209.

Chattaway, M. A., Dallman, T. J., Larkin, L., Nair, S., McCormick, J., Mikhail, A., Hartman, H., Godbole, G., Powell, D., Day, M., Smith, R., and Grant, K. (2019). The transformation of reference microbiology methods and surveillance for Salmonella with the use of whole genome sequencing in England and Wales. Frontiers in Public Health, 7, 317.

Cock, P. J. A., Antao, T., Chang, J. T., Chapman, B. A., Cox, C. J., Dalke, A., Friedberg, I., Hamelryck, T., Kauff, F., Wilczynski, B., and de Hoon, M. J. L. (2009). Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics, 25(11), 1422–1423.

Espinoza, R. A., Silva-Valenzuela, C. A., Amaya, F. A., Urrutia, Í. M., Contreras, I., and Santiviago, C. A. (2017). Differential roles for pathogenicity islands SPI-13 and SPI-8 in the interaction of Salmonella enteritidis and Salmonella typhi with murine and human macrophages. Biological Research, 50, 5.

Fabre, L., Zhang, J., Guigon, G., Hello, S. L., Guibert, V., Accou-Demartin, M., de Romans, S., Lim, C., Roux, C., Passet, V., Diancourt, L., Guibourdenche, M., Issenhuth-Jeanjean, S., Achtman, M., Brisse, S., Sola, C., and Weill, F.-X. (2012). CRISPR typing and subtyping for improved laboratory surveillance of Salmonella infections. PLoS ONE, 7(5), e36995.

Feldgarden, M., Brover, V., Gonzalez-Escalona, N., Frye, J. G., Haendiges, J., Haft, D. H., Hoffmann, M., Pettengill, J. B., Prasad, A. B., Tillman, G. E., Tyson, G. H., and Klimke, W. (2021). AMRFinderPlus and the reference gene catalog facilitate examination of the genomic links among antimicrobial resistance stress response, and virulence. Scientific Reports, 11, 12728.

Gal-Mor, O., Boyle, E. C., and Grassi, G. A. (2014). Same species, different diseases: How and why typhoidal and non-typhoidal Salmonella enterica serovars differ. Frontiers in Microbiology, 5, 391.

Guerrero-Araya, E., Muñoz, M., Rodríguez, C., and Paredes-Sabja, D. (2021). FastMLST: A multi-core tool for multilocus sequence typing of draft genome assemblies. Bioinformatics and Biology Insights, 15, 11779322211059238.

Hegazy, W. A. H., Xu, X., Metelitsa, L., and Hensel, M. (2012). Evaluation of Salmonella enterica type III secretion system effector proteins as carriers for heterologous vaccine antigens. Infection and Immunity, 80(3), 1193–1202.

Holmes, R. K., and Jobling, M. G. (1996). Chapter 5: Genetics. In Medical Microbiology (Baron, S., Ed.), 4th, Galveston, TX: University of Texas Medical Branch.

Ilyas, B., Tsai, C. N., and Coombes, B. K. (2017). Evolution of Salmonella-host cell interactions through a dynamic bacterial genome. Frontiers in Cellular and Infection Microbiology, 7, 428.

Li, C., Wang, Y., Gao, Y., Li, C., Ma, B., and Wang, H. (2021). Antimicrobial resistance and CRISPR typing among Salmonella isolates from poultry farms in China. Frontiers in Microbiology, 12, 730046.

Liu, F., Barrangou, R., Gerner-Smidt, P., Ribot, E. M., Knabel, S. J., and Dudley, E. G. (2011). Novel virulence gene and Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) multilocus sequence typing scheme for subtyping the major serovars of Salmonella enterica subsp. enterica. Applied Environment Microbiology, 77(6), 1946–1956.

Lou, L., Zhang, P., Piao, R., and Wang, Y. (2019). Salmonella Pathogenicity Island 1 (SPI-1) and its complex regulatory network. Frontiers in Cellular and Infection Microbiology, 9, 270.

Maiden, M. C. J., Jansen van Rensburg, M. J., Bray, J. E., Earle, S. G., Ford, S. A., Jolley, K. A., and McCarthy, N. D. (2013). MLST revisited: The gene-by-gene approach to bacterial genomics. Nature Reviews Microbiology, 11(10), 728–736.

Marcus, S. L., Brumell, J. H., Pfeifer, C. G., and Finlay, B. B. (2000). Salmonella pathogenicity islands: Big virulence in small packages. Microbes and Infection, 2(2), 145–156.

Mardis, E. R. (2006). Anticipating the $1,000 genome. Genome Biology, 7(7), 112.

Mohammed, M., and Thapa, S. (2020). Evaluation of WGS-subtyping methods for epidemiological surveillance of foodborne salmonellosis. One Health Outlook, 2, 13.

Moura, A., Criscuolo, A., Pouseele, H., Maury, M. M., Leclercq, A., Tarr, C., Björkman, J. T., Dallman, T., Reimer, A., Enouf, V., Larsonneur, E., Carleton, H., Bracq-Dieye, H., Katz, L. S., Jones, L., Touchon, M., Tourdjman, M., Walker, M., Stroika, S., ... Brisse, S. (2016). Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes. Nature Microbiology, 2, 16185.

Nishimasu, H., Ran, F. A., Hsu, P. D., Konermann, S., Shehata, S. I., Dohmae, N., Ishitani, R., Zhang, F., and Nureki, O. (2014). Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 156(5), 935–949.

Rychlik, I., Karasova, D., Sebkova, A., Volf, J., Sisak, F., Havlickova, H., Kummer, V., Imre, A., Annamaria Szmolka, A., and Nagy, B. (2009). Virulence potential of five major pathogenicity islands (SPI-1 to SPI-5) of Salmonella enterica serovar enteritidis for chickens. BMC Microbiology, 9, 268.

Sévellec, Y., Vignaud, M.-L., Granier, S. A., Lailler, R., Feurer, C., Le Hello, S., Mistou, M.-Y., and Cadel-Six, S. (2018). Polyphyletic nature of Salmonella enterica serotype derby and lineage-specific host-association revealed by genome-wide analysis. Frontiers in Microbiology, 9, 891.

Treangen, T. J., Ondov, B. D., Koren, S., and Phillippy, A. M. (2014). The harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biology, 15, 224.

Taylor, A. J., Lappi, V., Wolfgang, W. J., Lapierre, P., Palumbo, M. J., Medus, C., and Boxrud, D. (2015). Characterization of foodborne outbreaks of Salmonella enterica serovar enteritidis with whole-genome sequencing single nucleotide polymorphism-based analysis for surveillance and outbreak detection. Journal of Clinical Microbiology, 53(10), 3334–3340.

Uelze, L., Grützke, J., Borowiak, M., Hammerl, J. A., Juraschek, K., Deneke, C., Tausch, S. H., and Malorny, B. (2020). Typing methods based on whole genome sequencing data. One Health Outlook, 2, 3.

Urwin, R., and Maiden, M. C. J. (2003). Multi-locus sequence typing: A tool for global epidemiology. Trends in Microbiology, 11(10), 479–487.

Vallenet, D., Calteau, A., Dubois, M., Amours, P., Bazin, A., Beuvin, M., Burlot, L., Bussell, X., Fouteau, S., Gautreau, G., Lajus, A., Langlois, J., Planel, R., Roche, D., Rollin, J., Rouy, Z., Sabatet, V., and Médigue, C. (2019). MicroScope: An integrated platform for the annotation and exploration of microbial gene functions through genomic, pangenomic and metabolic comparative analysis. Nucleic Acids Research, 48(D1), D579–D589.

Vernikos, G. S., and Parkhill, J. (2006). Interpolated variable order motifs for identification of horizontally acquired DNA: Revisiting the Salmonella pathogenicity islands. Bioinformatics, 22(18), 2196–2203.

Wang, M., Qazi, I. H., Wang, L., Zhou, G., and Han, H. (2020). Salmonella virulence and immune escape. Microorganisms, 8(3), 407.

Yan, S., Zhang, W., Li, C., Liu, X., Zhu, L., Chen, L., and Yang, B. (2021). Serotyping, MLST, and core genome MLST analysis of Salmonella enterica from different sources in China during 2004–2019. Frontiers in Microbiology, 12, 688614.

Yoon, S. H., Park, Y.-K., and Kim, J, F. (2015). PAIDB v2.0: Exploration and analysis of pathogenicity and resistance islands. Nucleic Acids Research, 43(D1), D624–D630.

Yoshida, C. E., Kruczkiewicz, P., Laing, C. R., Jingohr, E. J., Gannon, V. P. J., Nash, J. H. E., and Taboada, E. N. (2016). The Salmonella in silico typing resource (SISTR): An open web-accessible tool for rapidly typing and subtyping draft Salmonella genome assemblies. Plos ONE, 11(1), e0147101.

Zhang, S., den Bakker, H. C., Li, S., Chen, J., Dinsmore, B. A., Lane, C., Lauer, A. C., Fields, P. I., and Deng, X. (2019). SeqSero2: Rapid and improved Salmonella serotype determination using whole-genome sequencing data. Applied and Environmental Microbiology, 85(23), e01746–19.

Zhou, Z., Alikhan, N.-F., Mohamed, K., and Achtman, M. (2020). The EnteroBase user's guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny and Escherichia core genomic diversity. Genome Research, 30(1), 138–152.