Evaluation of antidiabetic and antibacterial activities of Horsfieldia macrothyrsa leaves extracts
Main Article Content
Abstract
Cold maceration was used to extracting Horsfieldia macrothyrsa leaves with high lignan and alkaloid contents along with antidiabetic properties from methanol. This work examined the antidiabetic and antibacterial activities of methanol extract and other fractions from H. macrothyrsa leaves, utilizing α-glucosidase and antibacterial inhibition methods against some bacterial targets including Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Bacillus subtilis. This study found that the methanol extract (HMM) and ethyl acetate fraction of H. macrothyrsa (HME) leaves have antidiabetic potential, with IC50 values of 7.318 ± 0.57 and 6.694 ± 0.44 μg/mL, respectively. Interestingly, only the ethyl acetate (HME) fraction exhibited antibacterial activity against E. coli and S. aureus with MIC/MBC values at concentrations of 0.31/0.31 mg/L and 0.63/0.63 mg/L, respectively. As a result, the HME fraction was separated into 13 fractions using a gravity column chromatography method. The results revealed that the HME column chromatography fractions, namely F11 and F12, had the highest antidiabetic values. The best inhibitory power against all bacteria tested has been shown by F2 and F3, which have an inhibitory capacity of 8.67± 0.47 mm against S. aureus and 9.00 ± 0.00 mm B. subtilis bacteria on with MIC/MB values of 0.15/>0.15 mg/L. The HME fraction contained several bioactive compouds including the 7-hydroxy-3-methoxyflavone-2'-carboxylic acid and 8-acetyl harpagide, whereas the alkaloid group had 4-[(3R)-3-[Bis((2R)-2-hydroxy-2-phenylethyl)amino]]benzamide and 1,1–dimethylethyl 4-(4-aminobutyl)-1 piperidinecarboxylate, were also detected these compounds were tentatively identified using liquid chromatography-tandem mass spectrometry analysis (LC-MS/MS). These findings suggest that H. macrothyrsa leaves may have dual advantages as a reducing agent suggesting potential antidiabetic activity of avoiding diabetes (under 25 μg/mL) and against bacteria S. aureus and E. coli.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Akiyama, K., Yamauchi, S., Maruyama, M., Sugahara, T., Kishida, T., & Koba, Y. (2009). Antimicrobial activity of stereoisomers of morinols A and B, tetrahydropyran sesquineolignans. Bioscience, Biotechnology, & Biochemistry, 73(1), 129–133. https://doi.org/10.1271/bbb.80536
Chaicana, N. (2016). Nutrition composition and analysis of medicinal herb potential of horsfieldia glabra warb. seeds. KMUTNB International Journal of Applied Science and Technology, 9(1), 61–69. https://doi.org/10.14416/j.ijast.2015.12.001
Dewi, R. T., Darmawan, A., Mulyani, H., Lotulung, P. D. N., Minarti, M., & Megawati, M. (2018). α-glucosidase inhibitory effect of sulochrin from Aspergillus terreus and its brominated derivatives. Malaysian Journal of Science, 37(1), 70–81. https://doi.org/10.22452/mjs.vol37no1.5
Egharevba, G. O., Dosumu, O. O., Oguntoye, S. O., Njinga, N. S., Dahunsi, S. O., Hamid, A. A., Anand, A., Amtul, Z., & Priyanka, U. (2019). Antidiabetic, antioxidant and antimicrobial activities of extracts of Tephrosia bracteolata leaves. Heliyon, 5(8), Article e02775. https://doi.org/10.1016/j.heliyon.2019.e02275
Háznagy-Radnai, E., Réthy, B., Czigle, Sz., Zupkó, I., Wéber, E., Martinek, T., Falkay, G., & Máthé, I. (2008). Cytotoxic activities of stachys species. Fitoterapia, 79(7–8), 595–597. https://doi.org/10.1016/j.fitote.2008.06.009
Khan, M. R., Kihara, M., & Omoloso, A. D. (2001). Antimicrobial activity of Horsfieldia helwigii and Melia azedarach. Fitoterapia, 72(4), 423–427. https://doi.org/10.1016/S0367-326X(00)00334-8
King, F. E., King, T. J., & Stokes, P. J. (1954). The chemistry of extractives from hardwoods. Part XX. distemonanthin, a new type of flavone pigment from Distemonanthus benthamianus. Journal of the Chemical Society, 1954, 4594–4600. https://doi.org/10.1039/JR9540004594
Megawati, M., Ariani, N., Minarti, M., Darmawan, A., & Prastya, M. E. (2023). Investigations of antibacterial, antioxidant, and antidiabetic potential of extract and its active fractions from the leaves of Horsfieldia spicata (Roxb.) J. Sinclair. Chemistry & Biodiversity, 20(6), Article e202300113. https://doi.org/10.1002/cbdv.202300113
Minarti, M., Ariani, N., Prastya, M. E., Darmawan. A., & Megawati. M. (2022). Antioxidant and antibacterial properties derived from Horsfieldia spicata (Roxb.) J. Sinclair stem bark extract and its active fraction. In Proceedings of the 1st International Conference for Health Research – BRIN (ICHR 2022) (pp. 327–337). Atlantis Press. https://doi.org/10.2991/978-94-6463-112-8_31
Nafis, A., Fatima, E. K., Asmae, A., Brahim, O., Najat, M., Sarah, A., Abdallah, E. M., Asad, S., Lachen, H., & Luisa, C. (2021). In Vitro antimicrobial and synergistic effect of essential oil from the red macroalgae Centroceras clavulatum (C. Agardh) montagne with conventional antibiotics. Asian Pacific Journal of Tropical Biomedicine, 11(9), 414–420. https://doi.org/10.4103/2221-1691.321129
Omari, N. E., Sayah, K., Fettach, S., El Blidi, O., Bouyahya, A., Faouzi, M. E., Kamal, R., & Barkiyou, M. (2019). Evaluation of In Vitro antioxidant and antidiabetic activities of Aristolochia longa extracts. Evidence-Based Complementary and Alternative Medicine, 2019(1), 1–9. https://doi.org/10.1155/2019/7384735
Prabha, B., Neethu, S., Krishnan, L., Sherin, D. R., Madhukrishnan, M., Ananthakrishnan, R., Rameshkumar, K. B., Manojkumar, T. K., Jayamurth, P., & Radhakrishnan, K. V. (2018). Antidiabetic potential of phytochemicals isolated from the stem bark of Myristica fatua Houtt. var. magnifica (Bedd.) Sinclair. Bioorganic & Medicinal Chemistry, 26(12), 3461–3467. https://doi.org/10.1016/j.bmc.2018.05.020
Ramadhan, R., Kusuma, I. W., Amirta, R., Worawalai, W., & Phuwapraisirisan, P. A. (2018). A new 4-arylflavan from the pericarps of Horsfieldia motleyi displaying dual inhibition against α-glucosidase and free radicals. Natural Product Research, 32(22), 2676–2682. https://doi.org/10.1080/14786419.2017.1378204
Ramadhan, R., & Phuwapraisirisan, P. (2015). New arylalkanones from Horsfieldia macrobotrys, effective antidiabetic agents concomitantly inhibiting α-glucosidase and free radicals. Bioorganic & Medicinal Chemistry Letters, 25(20), 4529–4533. https://doi.org/10.1016/j.bmcl.2015.08.069
Riyadi, S. A., Naini, A., Mayani, T., Farabi, K., Lesmana, R., Azmi, M. N., Fajriah, S., & Supartman, U. (2024). Targeted triterpenoids from Dysoxylum alliaceum stem barks as cytotoxic agents in human cancer and normal cells. Research Square, 1–24. https://doi.org/10.21203/rs.3.rs-3851751/v1
Ventola, C. L. (2015). The antibiotic resistance crisis: Part 1: Causes and threats. Pharmacy and Therapeutics, 40(4), 277–283.
Wali, A. F., Alchamat, H. A. A., Hariri, H. K, Hariri B. K., Menezes, G. A., Zehra, U., Rehman, M. U., & Ahmad, P. (2020). Antioxidant, antimicrobial, antidiabetic and cytotoxic activity of Crocus sativus L. petals. Applied Sciences, 10(4), Article 1519. https://doi.org/10.3390/app10041519
WHO. (2018). List of blueprint priority diseases. World Health Organization. https://www.who.int/blueprint/priority-diseases/en/