Simulation radiation shielding properties of tungsten carbide alloys
Main Article Content
Abstract
This work evaluated the gamma rays shielding properties of tungsten carbide alloys. The mass attenuation coefficients (µm) of gamma rays for these alloys have been obtained at gamma rays energy ranges of 356–1,332 keV using WinXCom software and FLUKA Monte Carlo code simulation. The results are found to be in good agreement. The 0.832W+0.0498C+0.002Co+0.00092Fe+0.107Ni alloy sample showed the highest µm and radiation protection efficiency (RPE%) values, while half value layer (HVL), mean free path (MFP) and transmission factor (TF%) values showed the lowest value compared with the others. These results indicate that this alloy sample, which has the highest density, possesses excellent g-rays shielding properties.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
AbuAlRoos, N. J., Amin, N. A. B., & Zaino, R. (2019). Conventional and new lead-free radiation shielding materials for radiation protection in nuclear medicine: A review. Radiation Physics and Chemistry, 165, Article 108439. https://doi.org/10.1016/j.radphyschem.2019.108439
AbuAlRoos, N. J., Azman, M. N., Amin, N. A. B., & Zainon, R. (2020). Tungsten-based material as promising new lead-free gamma radiation shielding material in nuclear medicine. Physica Medica, 78, 48–57. https://doi.org/10.1016/j.ejmp.2020.08.017
Bushberg, J. T., Seibert, J. A., Leidholdt, E. M., Jr., & Boone, J. M. (2012). The essential physics of medical imaging (3rd ed.). Wolters Kluwer.
Buyuk, B., & Yugrul, A. B. (2014). Comparison of lead and WC-Co materials against gamma irradiation. Acta Physica Polonica Series A, 125(2), 423–425. http://doi.org/10.12693/APhysPolA.125.423
Chang, L., Zhang, Y., Liu, Y., Fang, J., Luan, W., Yang, X., & Zhang, W. (2015). Preparation and characterization of tungsten/epoxy composites for γ-rays radiation shielding. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 356–357, 88–93. https://doi.org/10.1016/j.nimb.2015.04.062
Demir, N., & Kuluöztürk, Z. N. (2021). Determination of energy resolution for a NaI(Tl) detector modeled with FLUKA code. Nuclear Engineering and Technology, 53(11), 3759–3763. https://doi.org/10.1016/j.net.2021.05.017
Ferrari, A., Sala, P. R., Fasso, A., & Ranft, J. (2005). FLUKA: A multi-particle transport code (CERN-2005-010; SLAC-R-773; INFN-TC-05-11). European Organization for Nuclear Research (CERN).
Gavrish, V. M., Baranov, G. A., Chayka, T. V., Derbasova, N. M., Lvov, A. V., & Matsuk, Y. M. (2016). Tungsten nanoparticles influence on radiation protection properties of polymers. IOP Conference Series: Materials Science and Engineering, 110, Article 012028. https://doi.org/10.1088/1757-899X/110/1/012028
Hanfi, M. Y., Sakr, A. K., Ismail, A. M., Atia, B. M., Alqahtani, M. S., & Mahmoud, K. A. (2023). Physical characterization and radiation shielding features of B2O3-As2O3 glass ceramic. Nuclear Engineering and Technology, 55(1), 278–284. https://doi.org/10.1016/j.net.2022.09.006
Kaur, T., Sharma, J., & Singh, T. (2019). Review on scope of metallic alloys in gamma rays shield designing. Progress in Nuclear Energy, 113, 95–113. https://doi.org/10.1016/j.pnucene.2019.01.016
Kobayashi, S., Hosoda, N., & Takashima, R. (1997). Tungsten alloys as radiation protection materials. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 390(3), 426–430. https://doi.org/10.1016/S0168-9002(97)00392-6
Luković, J., Babić, B., Bučevac, D., Prekajski, M., Pantić, J., Baščarević, Z., & Matović, B. (2015). Synthesis and characterization of tungsten carbide fine powders. Ceramics International, 41(1 Part B), 1271–1277. https://doi.org/10.1016/j.ceramint.2014.09.057
Manjunatha, H. C., Seenappa, L., Chandrika, B. M., & Hanumantharayappa, C. (2017). A study of photon interaction parameters in barium compounds. Annals of Nuclear Energy, 109, 310–317. https://doi.org/10.1016/j.anucene.2017.05.042
McAlister, D. R. (2012). Gamma ray attenuation properties of common shielding materials. University Lane.
Mirji, R., & Lobo, B. (2017). Radiation shielding materials: A brief review on methods, scope and significance. In Proceedings of the National Conference on ‘Advances in VLSI and Microelectronics’ (pp. 96–100). P.C. Jabin Science College.
Mouhti, I., Elanique, A., & Messous, M. Y. (2017). Monte Carlo modelling of a NaI(Tl) scintillator detectors using MCNP simulation code. Journal of Materials and Environmental Sciences, 8(12), 4560–4565. https://doi.org/10.26872/jmes.2017.8.12.481
Obaid, S. S., Gaikwad, D. K., & Pawar, P. P. (2018). Determination of gamma ray shielding parameters of rocks and concrete. Radiation Physics and Chemistry, 144, 356–360. https://doi.org/10.1016/j.radphyschem.2017.09.022
Roulon, Z., Missiaen, J. M., & Lay, S. (2020). Carbide grain growth in cemented carbides sintered with alternative binders. International Journal of Refractory Metals and Hard Materials, 86, Article 105088. https://doi.org/10.1016/j.ijrmhm.2019.105088
Sayyed, M. I., Akman, F., Kaçal, M. R., & Kumar, A. (2019). Radiation protective qualities of some selected lead and bismuth salts in the wide gamma energy region. Nuclear Engineering and Technology, 51(3), 860–866. https://doi.org/10.1016/j.net.2018.12.018
Sayyed, M. I., Dwaikat, N., Mhareb, M. H. A., D’Souza, A. N., Almousa, N., Alajerami, Y. S. M., Almasoud, F., Naseer, K. A., Kamath, S. D., Khandaker, M. U., Osman, H., & Alamri, S. (2022). Effect of TeO2 addition on the gamma radiation shielding competence and mechanical properties of boro-tellurite glass: An experimental approach. Journal of Materials Research and Technology, 18, 1017–1027. https://doi.org/10.1016/j.jmrt.2022.02.130
Shi, H.-X., Chen, B.-X., Li, T.-Z., & Yun, D. (2002). Precise Monte Carlo simulation of gamma-ray response functions for an NaI(Tl) detector. Applied Radiation and Isotopes, 57(4), 517–524. https://doi.org/10.1016/S0969-8043(02)00140-9
Sriwongsa, K., Tantiamnuay, P., Thepchai, P., Glumglomchit, P., Papatron, P., Yangyuen, P., Ravangvong, S., Khobkham, C., Mutuwong, C., & Bootjomchai, C. (2023). The Gamma Ray, thermal and fast neutrons shielding properties of Gd2O3-SiO2-Y2O3-CaO-B2O3 glass series using FLUKA simulation code. Science Essence Journal, 39(1), 27–40. https://ejournals.swu.ac.th/index.php/sej/article/view/14948
Tekin, H. O. (2016). MCNP-X Monte Carlo code application for mass attenuation coefficients of concrete at different energies by modeling 3 x 3 inch NaI(Tl) detector and comparison with XCOM and Monte Carlo data. Science and Technology of Nuclear Installations, 2016(1), Article 6547318. https://doi.org/10.1155/2016/6547318
Tekin, H. O., ALMisned, G., Rammah, Y. S., Ahmed, E. M., Ali, F. T., Baykal, D. S., Elshami, W., Zakaly, H. M. H., Issa, S. A. M., Kilic, G., & Ene, A. (2022). Transmission factors, mechanical, and gamma ray attenuation properties of barium-phosphate-tungsten glasses: Incorporation impact of WO3. Optik, 267, Article 169643. https://doi.org/10.1016/j.ijleo.2022.169643
Vlachoudis, V. (2009). Flair: A powerful but user friendly graphical interface for FLUKA. In International Conference on Mathematics, Computational Methods & Reactor Physics 2009 (pp. 790–800). American Nuclear Society. https://cds.cern.ch/record/2749540/?ln=en
Wani, A. L., Ara, A., & Usmani, J. A. (2015). Lead toxicity: A review. Interdisciplinary Toxicology, 8(2), 55–64. https://doi.org/10.1515/intox-2015-0009