Au-loaded TiO2: A photocatalyst for photocatalytic hydrogen production with formic acid as a hole scavenger

Main Article Content

Karnnapus Dangsakol
Cheewita Suwanchawalit
Tarawipa Puangpetch

Abstract

Three methods successfully synthesized the TiO2 photocatalysts: sol-gel, solvothermal, and flame spray pyrolysis. Au was loaded onto the synthesized TiO2 photocatalysts via three methods:  incipient impregnation, photo-deposition, and single-step doping. All synthesized TiO2 photocatalysts were characterized by XRD, N2 physisorption, TEM, UV-vis spectroscopy, H2 chemisorption, and photoluminescence spectroscopy. The results pointed out that only sol-gel and solvothermal methods could provide the pure anatase-phase TiO2. The anatase-phase, mesoporous-agglomeration structure of nano-crystallite size particles, suitable pore diameter, and relatively high surface area of the solvothermal-synthesized TiO2 were the key properties that played important roles in maximizing its pristine-form photocatalytic activity in hydrogen production via photodegradation of formic acid under visible light irradiation. With Au loading by the photo-deposition method, the highest dispersion of Au on the TiO2 surface and an acceptably low recombination rate of electron-hole pairs were achieved, yielding the most desirable Au-loaded, solvothermal-synthesized TiO2 photocatalyst with the highest H2 production rate of ~6,000 mmolH2/h/gcat.

Downloads

Download data is not yet available.

Article Details

How to Cite
Dangsakol, K., Suwanchawalit, C., & Puangpetch, T. (2025). Au-loaded TiO2: A photocatalyst for photocatalytic hydrogen production with formic acid as a hole scavenger. Science, Engineering and Health Studies, 19, 25040012. https://doi.org/10.69598/sehs.19.25040012
Section
Engineering

References

Abdelli, H., Hamoud, H. I., Bolletta, J. P., Paecklar, A., Bardaoui, A., Kostov, K. L., Szaniawska, E., Maignan, A., Martin, C., & El-Roz, M. (2023). H2 production from formic acid over highly stable and efficient Cu-Fe-O spinel based photocatalysts under flow, visible-light and at room temperature conditions. Applied Materials Today, 31, Article 101771. https://doi.org/10.1016/j.apmt.2023.101771

Ahmad, K., Ghatak, H. R., & Ahuja, S. M. (2020). A review on photocatalytic remediation of environmental pollutants and H2 production through water splitting: A sustainable approach. Environmental Technology & Innovation, 19, Article 100893. https://doi.org/10.1016/j.eti.2020.100893

Araña, J., Cabo, C. G., Dona-Rodrıguez, J. M., González-Dıaz, O., Herrera-Melián, J. A., & Pérez-Peña, J. (2004). FTIR study of formic acid interaction with TiO2 and TiO2 doped with Pd and Cu in photocatalytic processes. Applied Surface Science, 239(1), 60–71. https://doi.org/10.1016/j.apsusc.2004.04.039

Bamwenda, G. R., Tsubota, S., Nakamura, T., & Haruta, M. (1995). Photoassisted hydrogen production from a water-ethanol solution: A comparison of activities of Au-TiO2 and Pt-TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 89(2), 177–189. https://doi.org/10.1016/1010-6030(95)04039-I

Bhuskute, B. D., Ali-Löytty, H., Honkanen, M., Salminen, T., & Valden, M. (2022). Influence of the photodeposition sequence on the photocatalytic activity of plasmonic Ag–Au/TiO2 nanocomposites. Nanoscale Advances, 4(20), 4335–4343. https://doi.org/10.1039/d2na00440b

Boningari, T., Inturi, S. N. R., Suidan, M., & Smirniotis, P. G. (2018). Novel one-step synthesis of sulfur doped-TiO2 by flame spray pyrolysis for visible light photocatalytic degradation of acetaldehyde. Chemical Engineering Journal, 339, 249–258. https://doi.org/10.1016/j.cej.2018.01.063

Bouhadoun, S., Guillard, C., Dappozze, F., Singh, S., Amans, D., Bouclé, J., & Herlin-Boime, N. (2015). One step synthesis of N-doped and Au-loaded TiO2 nanoparticles by laser pyrolysis: Application in photocatalysis. Applied Catalysis B: Environment and Energy, 174–175, 367–375. https://doi.org/10.1016/j.apcatb.2015.03.022

Cao, D., Wang, Q., Wu, Y., Zhu, S., Jia, Y., & Wang, R. (2020). Solvothermal synthesis and enhanced photocatalytic hydrogen production of Bi/Bi2MoO6 co-sensitized TiO2 nanotube arrays. Separation and Purification Technology, 250, Article 117132. https://doi.org/10.1016/j.seppur.2020.117132

Chan, S. C., & Barteau, M. A. (2005). Preparation of highly uniform Ag/TiO2 and Au/TiO2 supported nanoparticle catalysis by photodeposition. Langmuir, 21(12), 5588–5595. https://doi.org/10.1021/la046887k

Chiarello, G. L., Aguirre, M. H., & Selli, E. (2010). Hydrogen production by photocatalytic steam reforming of methanol on noble metal-modified TiO2. Journal of Catalysis, 273(2), 182–190. https://doi.org/10.1016/j.jcat.2010.05.012

Chiarello, G. L., Selli, E., & Forni, L. (2008). Photocatalytic hydrogen production over flame spray pyrolysis-synthesised TiO2 and Au/TiO2. Applied Catalysis B: Environmental, 84(1–2), 332–339. https://doi.org/10.1016/j.apcatb.2008.04.012

Chung, K.-H., Park, Y.-K., Kim, S.-J., Kim, S.-C., & Jung, S.-C. (2023). Green hydrogen production from ammonia water by liquid–plasma cracking on solid acid catalysts. Renewable Energy, 216, Article 119052. https://doi.org/10.1016/j.renene.2023.119052

Farias, J., Albizzati, E. D., & Alfano, O. M. (2009). Kinetic study of the photo-Fenton degradation of formic acid: Combined effects of temperature and iron concentration. Catalysis Today, 144(1–2), 117–123. https://doi.org/10.1016/j.cattod.2008.12.027

Gonzalez, V. R., Zanella, R., Angel, G. D., & Gomez, R. (2008). MTBE visible-light photocatalytic decomposition over Au/TiO2 and Au/TiO2-Al2O3 sol-gel prepared catalysts. Journal of Molecular Catalysis A: Chemical, 281(1–2), 93–98. https://doi.org/10.1016/j.molcata.2007.07.009

Guo, W., Guo, T., Zhang, Y., Yin, L., & Dai, Y. (2023). Progress on simultaneous photocatalytic degradation of pollutants and production of clean energy: A review. Chemosphere, 339, Article 139486. https://doi.org/10.1016/j.chemosphere.2023.139486

Gupta, A., Likozar, B., Jana, R., Chanu, W. C., & Singh, M. K. (2022). A review of hydrogen production processes by photocatalytic water splitting–From atomistic catalysis design to optimal reactor engineering. International Journal of Hydrogen Energy, 47(78), 33282–33307. https://doi.org/10.1016/j.ijhydene.2022.07.210

Guzmán, C., Del Angel, G., Gómez, R., Galindo, F., Zanella, R., Torres, G., Angeles-Chavez, C., & Fierro, J. L. G. (2009). Gold particle size determination on Au/TiO2-CeO2 catalysts by means of carbon monoxide, hydrogen chemisorption and transmission electron microscopy. Journal of Nano Research, 5, 13–23. https://doi.org/10.4028/www.scientific.net/JNanoR.5.13

Hayat, A., Ali, H., Ajmal, Z., Alshammari, A., Alghamdi, M. M., El-Zahhar, A. A., Almuqati, N., Sohail, M., Abu-Dief, A. M., Khan, S., Al-Hadeethi, Y., Ansari, M. Z., & Orooji, Y. (2024). Emerging breakthroughs in covalent triazine frameworks: From fundamentals towards photocatalytic water splitting and challenges. Progress in Materials Science, 147, Article 101352. https://doi.org/10.1016/j.pmatsci.2024.101352

Hidalgo, M. C., Maicu, M., Navío, J. A., & Colón, G. (2009). Effect of sulfate pretreatment on gold-modified TiO2 for photocatalytic applications. The Journal of Physical Chemistry C, 113(29), 12840–12847. https://doi.org/10.1021/jp903432p

Huang, B. S., & Wey, M. Y. (2011). Properties and H2 production ability of Pt photodeposited on the anatase phase transition of nitrogen-doped titanium dioxide. International Journal of Hydrogen Energy, 36(16), 9479–9486. https://doi.org/10.1016/j.ijhydene.2011.05.064

Kang, M. (2003). Synthesis of Fe/TiO2 photocatalyst with nanometer size by solvothermal method and the effect of H2O addition on structural stability and photodecomposition of methanol. Journal of Molecular Catalysis A: Chemical, 197(1–2), 173–183. https://doi.org/10.1016/S1381-1169(02)00586-1

Kang, M., Ko, Y. R., Jeon, M. K., Lee, S. C., Choung, S. J., Park, J. Y., Kim, S., & Choi, S. H. (2005). Characterization of Bi/TiO2 nanometer size particle synthesized by solvothermal method and CH3CHO decomposition in a plasma-photocatalytic system. Journal of Photochemistry and Photobiology A: Chemistry, 173(2), 128–136. https://doi.org/10.1016/j.jphotochem.2004.12.030

Kang, M., Lee, S. Y., Chung, C. H., Cho, S. M., Han, G. Y., Kim, B. W., & Yoon, K. J. (2001). Characterization of a TiO2 photocatalyst synthesized by the solthermal method and its catalytic performance for CHCl3 decomposition. Journal of Photochemistry and Photobiology A: Chemistry, 144(2–3), 185–191. https://doi.org/10.1016/S1010-6030(01)00501-9

Khan, M. A., Woo, S. I., & Yang, O. B. (2008). Hydrothemally stabilized Fe(III) doped titania active under visible light for water splitting reaction. International Journal of Hydrogen Energy, 33(20). 5345–5351. https://doi.org/10.1016/j.ijhydene.2008.07.119

Khtaee, A. R., & Kasiri, M. B. (2010). Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: Influence of the chemical structure of dyes. Journal of Molecular Catalysis A: Chemical, 328(1–2), 8–26. https://doi.org/10.1016/j.molcata.2010.05.023

Kongsuebchart, W., Prasertdam, P., Panpranot, J., Sirisuk, A., Supphasrirongjaroen, P., & Satayaprasert, C. (2006). Effect of crystallite sie on the surface defect of nano-TiO2 prepared via solvothermal synthesis. Journal of Crystal Growth, 297(1), 234–238. https://doi.org/10.1016/j.jcrysgro.2006.09.018

Lee, Y., Chae, J., & Kang, M. (2010). Comparison of the photovoltaic efficiency on DSSC for nanometer sized TiO2 using a conventional sol-gel and solvothermal methods. Journal of Industrial and Engineering Chemistry, 16(4), 609–614. https://doi.org/10.1016/j.jiec.2010.03.008

Lin, X., Rong, F., Fu, D., & Yuan, C. (2012). Enhanced photocatalytic activity of fluorine doped TiO2 by loaded with Ag for degradation of organic pollutants. Powder Techno, 219, 173–178. https://doi.org/10.1016/j.powtec.2011.12.037

Liu, G., Wang, L., Yang, H. G., Cheng, H. M., & Lu, G. Q. (2010). Titania-based photocatalysts—crystal growth, doping and heterostructuring. Journal of Materials Chemistry, 20(5), 831–843. https://doi.org/10.1039/B909930A

Mahdavi-Shakib, A., Sravan-Kumar, K. B., Whittaker N. T., Xie, T., Grabow, C. L., Rioux, M. R., & Chandler, D. B. (2021). Kinetics of H2 adsorption at the metal–support interface of Au/TiO2 catalysts probed by broad background IR absorbance. Angewandte Chemie International Edition, 60(14), 7735–7743. https://doi.org/10.1002/anie.202013359

Meyer, R., Lemire, C., Shaikhutdinov, Sh. K., & Freund, H.-J. (2004). Surface chemistry of catalysis by gold. Gold Bulletin, 37(1–2), 72–124. https://doi.org/10.1007/BF03215519

Mueller, R., Madler, L., & Pratsinis, S. E. (2003). Nanoparticle synthesis at high production rates by flame spray pyrolysis. Chemical Engineering Science, 58(10), 1969–1976. https://doi.org/10.1016/S0009-2509(03)00022-8

Nam, W. S., & Han, G. Y. (2003). Characterization and photocatalytic performance of nanosize TiO2 powders prepared by the solvothermal method. Korean Journal of Chemical Engineering, 20(6), 1149–1153. https://doi.org/10.1007/BF02706953

Osterloh, F. E., & Parkinson, B. A. (2011). Recent developments in solar water-splitting photocatalysis. MRS Bulletin, 36(1), 17–22. https://doi.org/10.1557/mrs.2010.5

Patsoura, A., Kondarides, D. I., & Verykios, X. E. (2007). Photocatalytic degradation of organic pollutants with simultaneous production of hydrogen. Catalysis Today, 124(3–4), 94–102. https://doi.org/10.1016/j.cattod.2007.03.028

Pawinrat, P., Mekasuwandumrong, O., & Panpranot, J. (2009). Synthesis of Au-ZnO and Pt-ZnO nanocomposites by one-step flame spray pyrolysis and its application for photocatalytic degradation of dyes. Catalysis Communications, 10(10), 1380–1385. https://doi.org/10.1016/j.catcom.2009.03.002

Payakgul, W., Mekasuwandumrong, O., Pavarajarn, V., & Praserthdam, P. (2005). Effects of reaction medium on the synthesis of TiO2 nanocrystals by thermal decomposition of titanium (IV) n-butoxide. Ceramics International, 31(3), 391–397. https://doi.org/10.1016/j.ceramint.2004.05.025

Peng, T., Ke, D., Cai, P., Daia, K., Ma, L., & Zan, L. (2008). Influence of different ruthenium (II) bipyridyl complex on the photocatalytic H2 evolution over TiO2 nanoparticles with mesostructures. Journal of Power Sources, 180(1), 498–505. https://doi.org/10.1016/j.jpowsour.2008.02.002

Puangpetch, T., Chavadej, S., & Sreethawong, T. (2011). Hydrogen production over Au-loaded mesoporous-assembled SrTiO3 nanocrytal photocatalyst: Effects of molecular structure and chemical properties of hole scavengers. Energy Convers Manage, 52(5), 2256–2261. https://doi.org/10.1016/j.enconman.2010.12.026

Puangpetch, T., Sreethawong, T., & Chavadej, S. (2010). Hydrogen production over metal-loaded mesoporous-assembled SrTiO3 nanocrystal photocatalysis: Effects of metal type and loading. International Journal of Hydrogen Energy, 35(13), 6531–6540. https://doi.org/10.1016/j.ijhydene.2010.04.015

Puangpetch, T., Sreethawong, T., Yoshikawa, S., & Chavadej, S. (2008). Synthesis and photocatalytic activity in methyl orange degradation of mesoporous-assembled SrTiO3 nanocrystals prepared by sol–gel method with the aid of structure-directing surfactant. Journal of Molecular Catalysis A: Chemical, 287(1–2), 70–79. https://doi.org/10.1016/j.molcata.2008.02.027

Puangpetch, T., Sreethawong, T., Yoshikawa, S., & Chavadej, S. (2009). Hydrogen production from photocatalytic water splitting over mesoporous-assembled SrTiO3 nanocrystal-based photocatalysts. Journal of Molecular Catalysis A: Chemical, 312(1–2), 97–106. https://doi.org/10.1016/j.molcata.2009.07.012

Rodríguez-Martínez, C., García-Domínguez, Á. E., Guerrero-Robles, F., Saavedra-Díaz, R. O., Torres-Torres, G., Felipe, C., Ojeda-López, R., Silahua-Pavón, A., & Cervantes-Uribe, A. (2020). Synthesis of supported metal nanoparticles (Au/TiO2) by the suspension impregnation method. Journal of Composites Science, 4(3), Article 89. https://doi.org/10.3390/jcs4030089

Rouquerol, F., Rouquerol, J., & Sing, K. (1999). Adsorption by powders and porous solids: Principles, methodology and applications. Academic Press.

Rusinque, B., Escobedo, S., & de Lasa, H. (2019). Photocatalytic hydrogen production under near-UV using Pd-doped mesoporous TiO2 and ethanol as organic scavenger. Catalysts, 9(1), Article 33. https://doi.org/10.3390/catal9010033

Sadek, O., Touhtouh, S., Dahbi, A., & Hajjaji, A. (2023). Photocatalytic degradation of methylene blue on multilayer TiO2 coatings elaborated by the sol-gel spin-coating method. Water, Air, & Soil Pollution, 234, Article 698. https://doi.org/10.1007/s11270-023-06558-4

Sasikala, R., Sudarsan, V., Sudakar, C., Naik, R., Panicker, L., & Bharadwaj, S. R. (2009). Modification of the photocatalytic properties of self doped TiO2 nanoparticles for hydrogen generation using sunlight type radiation. International Journal of Hydrogen Energy, 34(15), 6105–6113. https://doi.org/10.1016/j.ijhydene.2009.05.131

Solanki, K., Parmar, D., Savaliya, C., Kumar, S., & Jethva, S. (2022). Surface morphology and optical properties of sol-gel synthesized TiO2 nanoparticles: Effect of Co, Pd and Ni-doping. Materials Today: Proceedings, 50(Part 6), 2576–2580. https://doi.org/10.1016/j.matpr.2021.10.182

Sreethawong, T., Junbua, C., & Chavadej, S. (2009a). Photocatalytic H2production from water splitting under visible light light irradiation using eosin Y-sensitized mesoporous-assembled Pt/TiO2 nanocrystal photocatalyst. Journal of Power Sources, 190(2), 513–524. https://doi.org/10.1016/j.jpowsour.2009.01.054

Sreethawong, T., Laehsalee, S., & Chavadej, S. (2008). Comparative investigation of mesoporous- and non-mesoporous-assembled TiO2 nanocrystals for photocatalytic H2 production over N-doped TiO2 under visible light irradiation. International Journal of Hydrogen Energy, 33(21), 5947–5957. https://doi.org/10.1016/j.ijhydene.2008.08.007

Sreethawong, T., Laehsalee, S., & Chavadej, S. (2009b). Use of Pt/N-doped mesoporous-assembled nanocrystalline TiO2 for photocatalytic H2 production under visible light irradiation. Catalysis Communications, 10(5), 538–543. https://doi.org/10.1016/j.catcom.2008.10.029

Strobel, R., Baiker, A., & Pratsinis, S. E. (2006). Flame aerosol synthesis of smart catalysts. Advanced Powder Technology, 17(5), 457–480. https://doi.org/10.1163/156855206778440525

Strobel, R., & Pratsinis, S. E. (2007). Flame aerosol synthesis of smart nanostructured materials. Journal of Materials Chemistry, 17(45), 4743–4756. https://doi.org/10.1039/B711652G

Teoh, W. Y., Amal, R., & Madler, L. (2010). Flame spray pyrolysis: An enabling technology for nanoparticles design and fabrication. Nanoscale, 2(8), 1324–1347. https://doi.org/10.1039/C0NR00017E

Teoh, W. Y., Madler, L., Beydoun, D., Pratsinis, S. E., & Amal, R. (2005). Direct (one-step) synthesis of TiO2 and Pt/TiO2 nanoparticles for photocatalytic mineralization of sucrose. Chemical Engineering Science, 60(21), 5852–5861. https://doi.org/10.1016/j.ces.2005.05.037

Wang, Q., Ren, C., Zhao, Y., Fang, F., Yin, Y., Ye, Y., Yang, K., Yang, Q., & Wang, K. (2023a). Photocatalytic pollutant elimination and hydrogen production over TiO2 NTs/Bi2S3-MoS2 with Z-scheme configuration: Kinetics and mechanism. Materials Research Bulletin, 167, Article 112430. https://doi.org/10.1016/j.materresbull.2023.112430

Wang, Q., Zhao, Y., Zhang, Z., Liao, S., Deng, Y., Wang, X., Ye, Q., & Wang, K. (2023a). Hydrothermal preparation of Sn3O4/TiO2 nanotube arrays as effective photocatalysts for boosting photocatalytic dye degradation and hydrogen production. Ceramics International, 49(4), 5977–5985. https://doi.org/10.1016/j.ceramint.2022.11.113

Wang, S., Shiraishi, F., & Nakano, K. (2002). A synergistic effect of photocatalysis and ozonation on decomposition of formic acid in an aqueous solution. Chemical Engineering Journal, 87(2), 261–271. https://doi.org/10.1016/S1385-8947(02)00016-5

Yan, H., & Yang, H. (2011). TiO2-g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation. Journal of Alloys and Compounds, 509(4), L26–L29. https://doi.org/10.1016/j.jallcom.2010.09.201

Yan, Z., Yin, K., Xu, M., Fang, N., Yu, W., Chu, Y., & Shu, S. (2023). Photocatalysis for synergistic water remediation and H2 production: A review. Chemical Engineering Journal, 472, Article 145066. https://doi.org/10.1016/j.cej.2023.145066

Zhang, Y. J., & Zhang, L. (2009). Photocatalytic degradation of formic acid with simultaneous production of hydrogen over Pt and Ru-loaded CdS/Al-HMS photocatalysts. Desalination, 249(3), 1017–1021. https://doi.org/10.1016/j.desal.2009.09.011