Antioxidant activity of gallic acid carbon-based nanomaterials

Main Article Content

Koranat Dechsri
Cheewita Suwanchawalit
Supusson Pengnam
Chaiyakarn Pornpitchanarong
Praneet Opanasopit
Auayporn Apirakaramwong

Abstract

Reactive oxygen species (ROS) play a role in multiple physiological processes. In contrast, an excessive generation of ROS can harm various biological components, including proteins, lipids, and DNA, leading to accelerated aging, illness, and inflammatory disorders. Carbon-based nanomaterials (CNMs) are well-known nanomaterials widely developed for antioxidant activity because of their great biocompatibility, low toxicity, easy synthesis, unique physicochemical properties, and especially great ROS scavenging ability. The most general method to prepare CNMs is bottom-up synthesis because it is more environmentally friendly and economical than top-down methods. In this study, the antioxidant activity of CNMs was evaluated. A microwave-assisted pyrolysis method was applied at 200°C for 20 min to prepare gallic acid carbon-based nanomaterials (GACNMs) by using 2.5 mg/mL of gallic acid as a carbon source according to the previous research. The morphology, cytotoxicity on normal human fibroblast cell lines by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay, and antioxidant activity using a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay were elucidated. The results revealed that the GACNMs were spherical, with a particle size of 104.43±0.43 nm, and their structure was in line with the previous study. The GACNMs exhibited higher antioxidant activity (50% scavenging capacity (SC50) of 0.99±0.07 μg/mL) than the gallic acid solution (SC50 of 1.25±0.03 μg/mL). The GACNMs were non-toxic to fibroblast cells. Therefore, the GACNMs could be a promising nanomaterial for skin antioxidants.

Downloads

Download data is not yet available.

Article Details

How to Cite
Dechsri, K., Suwanchawalit, C., Pengnam, S., Pornpitchanarong, C., Opanasopit, P., & Apirakaramwong, A. (2024). Antioxidant activity of gallic acid carbon-based nanomaterials. Science, Engineering and Health Studies, 18, 24050019. https://doi.org/10.69598/sehs.18.24050019
Section
Health sciences

References

Abdal Dayem, A., Hossain, M. K., Lee, S. B., Kim, K., Saha, S. K., Yang, G. M., Choi, H. Y., and Cho, S. G. (2017). The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. International Journal of Molecular Sciences, 18(1), 120.

Aye, K. C., Rojanarata, T., Ngawhirunpat, T., Opanasopit, P., Pornpitchanarong, C., and Patrojanasophon, P. (2023). Development and optimization of curcumin-nanosuspensions with improved wound healing effect. Journal of Drug Delivery Science and Technology, 89, 104997.

Biswas, S., Mukherjee, P. K., Kar, A., Bannerjee, S., Charoensub, R., and Duangyod, T. (2021). Optimized piperine-phospholipid complex with enhanced bioavailability and hepatoprotective activity. Pharmaceutical Development and Technology, 26(1), 69–80.

Brand-Williams, W., Cuvelier, M. E., and Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30.

Calabrese, L., Fiocco, Z., Mellett, M., Aoki, R., Rubegni, P., French, L. E., and Satoh, T. K. (2024). Role of the NLRP1 inflammasome in skin cancer and inflammatory skin diseases. British Journal of Dermatology, 190(3), 305–315.

Chaudhary, P., Janmeda, P., Docea, A. O., Yeskaliyeva, B., Abdull Razis, A. F., Modu, B., Calina, D., and Sharifi-Rad, J. (2023). Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases. Frontiers in Chemistry, 11, 1158198.

Chen, X., Guo, C., and Kong, J. (2012). Oxidative stress in neurodegenerative diseases. Neural Regeneration Research, 7(5), 376–385.

Choe, E., and Min, D. (2009). Mechanisms of antioxidants in the oxidation of foods. Comprehensive Reviews in Food Science and Food Safety, 8(4), 345–358.

Chu, K.-W., Lee, S. L., Chang, C.-J., and Liu, L. (2019). Recent progress of carbon dot precursors and photocatalysis applications. Polymers (Basel), 11(4), 689.

Cutrim, E. S. M., Vale, A. A. M., Manzani, D., Barud, H. S., Rodríguez-Castellón, E., Santos, A. P. S. A., and Alcântara, A. C. S. (2021). Preparation, characterization and in vitro anticancer performance of nanoconjugate based on carbon quantum dots and 5-Fluorouracil. Materials Science and Engineering: C, 120, 111781.

Dechsri, K., Suwanchawalit, C., Patrojanasophon, P., Opanasopit, P., Pengnam, S., Charoenying, T., and Taesotikul, T. (2024). Photodynamic antibacterial therapy of gallic acid-derived carbon-based nanoparticles (GACNPs): Synthesis, characterization, and hydrogel formulation. Pharmaceutics, 16(2), 254.

Duan, Q., Ma, Y., Che, M., Zhang, B., Zhang, Y., Li, Y., Zhang, W., and Sang, S. (2019). Fluorescent carbon dots as carriers for intracellular doxorubicin delivery and track. Journal of Drug Delivery Science and Technology, 49, 527–533.

Eftekhari, A., Dizaj, S. M., Chodari, L., Sunar, S., Hasanzadeh, A., Ahmadian, E., and Hasanzadeh, M. (2018). The promising future of nano-antioxidant therapy against environmental pollutants induced-toxicities. Biomedicine & Pharmacotherapy, 103, 1018–1027.

Egbuna, C., Parmar, V. K., Jeevanandam, J., Ezzat, S. M., Patrick-Iwuanyanwu, K. C., Adetunji, C. O., Khan, J., Onyeike, E. N., Uche, C. Z., Akram, M., Ibrahim, M. S., El Mahdy, N. M., Awuchi, C. G., Saravanan, K., Tijjani, H., Odoh, U. E., Messaoudi, M., Ifemeje, J. C., Olisah, M. C., . . . Ibeabuchi, C. G. (2021). Toxicity of nanoparticles in biomedical application: Nanotoxicology. Journal of Toxicology, 2021(1), 9954443.

Espina, A., Canamares, M. V., Jurasekova, Z., and Sanchez-Cortes, S. (2022). Analysis of iron complexes of tannic acid and other related polyphenols as revealed by spectroscopic techniques: Implications in the identification and characterization of iron gall inks in historical manuscripts. ACS Omega, 7(32), 27937–27949.

Innocenzi, P., and Stagi, L. (2023). Carbon dots as oxidant-antioxidant nanomaterials, understanding the structure-properties relationship. A critical review. Nano Today, 50, 101837.

Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A., and Danquah, M. K. (2018). Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein Journal of Nanotechnology, 9, 1050–1074.

Kahkeshani, N., Farzaei, F., Fotouhi, M., Alavi, S. S., Bahramsoltani, R., Naseri, R., Momtaz, S., Abbasabadi, Z., Rahimi, R., Farzaei, M. H., and Bishayee, A. (2019). Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iranian Journal of Basic Medical Sciences, 22(3), 225–237.

Khalil, I., Yehye, W. A., Etxeberria, A. E., Alhadi, A. A., Dezfooli, S. M., Julkapli, N. B. M., Basirun, W. J., and Seyfoddin, A. (2020). Nanoantioxidants: Recent trends in antioxidant delivery applications. Antioxidants (Basel), 9(1), 24.

Khan, Y., Sadia, H., Ali Shah, S. Z., Khan, M. N., Shah, A. A., Ullah, N., Ullah, M. F., Bibi, H., Bafakeeh, O. T., Khedher, N. B., Eldin, S. M., Fadhl, B. M., and Khan, M. I. (2022). Classification, synthetic, and characterization approaches to nanoparticles, and their applications in various fields of nanotechnology: A review. Catalysts, 12(11), 1386.

Kumar, H., Bhardwaj, K., Nepovimova, E., Kuča, K., Dhanjal, D. S., Bhardwaj, S., Bhatia, S. K., Verma, R., and Kumar, D. (2020). Antioxidant functionalized nanoparticles: A combat against oxidative stress. Nanomaterials (Basel), 10(7), 1334.

Li, X., Yu, L., He, M., Chen, C., Yu, Z., Jiang, S., Wang, Y., Li, L., Li, B., Wang, G., Shen, A., and Fan, J. (2023). Review on carbon dots: Synthesis and application in biology field. Biomedical Engineering Materials Journal, 1(4), e12045.

Lidfeldt, J., Nerbrand, C., Samsioe, G., and Agardh, C.-D. (2005). Women living alone have an increased risk to develop diabetes, which is explained mainly by lifestyle factors. Diabetes Care, 28(10), 2531–2536.

Lü, J. M., Lin, P. H., Yao, Q., and Chen, C. (2010). Chemical and molecular mechanisms of antioxidants: Experimental approaches and model systems. Journal of Cellular and Molecular Medicine, 14(4), 840–860.

Manzoor, S., Dar, A. H., Dash, K. K., Pandey, V. K., Srivastava, S., Bashir, I., and Khan, S. A. (2023). Carbon dots applications for development of sustainable technologies for food safety: A comprehensive review. Applied Food Research, 3(1), 100263.

Md Jaffri, J. (2023). Reactive oxygen species and antioxidant system in selected skin disorders. Malaysian Journal of Medical Sciences, 30(1), 7–20.

Nandhini, J., Karthikeyan, E., and Rajeshkumar, S. (2024). Nanomaterials for wound healing: Current status and futuristic frontier. Biomedical Technology, 6, 26–45.

Ng, J. Y., and Chew, F. T. (2022). A systematic review of skin ageing genes: Gene pleiotropy and genes on the chromosomal band 16q24.3 may drive skin ageing. Scientific Reports, 12(1), 13099.

Omran, B., and Baek, K.-H. (2021). Nanoantioxidants: Pioneer types, advantages, limitations, and future insights. Molecules, 26(22), 7031.

Padmanaban, S., Pully, D., Samrot, A. V., Gosu, V., Sadasivam, N., Park, I.-K., Radhakrishnan, K., and Kim, D.-K. (2023). Rising influence of nanotechnology in addressing oxidative stress-related liver disorders. Antioxidants (Basel), 12(7), 1405.

Patel, K. D., Singh, R. K., and Kim, H.-W. (2019). Carbon based-nanomaterials as an emerging platform for theranostics. Materials Horizons, 6(3), 434–469.

Ross, S., Wu, R.-S., Wei, S.-C., Ross, G. M., and Chang, H.-T. (2020). The analytical and biomedical applications of carbon dots and their future theranostic potential: A review. Journal of Food and Drug Analysis, 28(4), 677–695.

Shah, S. T., Chowdhury, Z. Z., Simarani, K., Basirun, W. J., Badruddin, I. A., Hussien, M., Alrobei, H., and Kamangar, S. (2022). Nanoantioxidants: The fourth generation of antioxidants—Recent research roadmap and future perspectives. Coatings, 12(10), 1568.

Shi, L., Shu, X.-O., Li, H., Cai, H., Liu, Q., Zheng, W., Xiang, Y.-B., and Villegas, R. (2013). Physical activity, smoking, and alcohol consumption in association with incidence of type 2 diabetes among middle-aged and elderly Chinese men. PLoS One, 8(11), e77919.

Speranza, G. (2021). Carbon Nanomaterials: Synthesis, functionalization and sensing applications. Nanomaterials (Basel), 11(4), 967.

Vona, R., Pallotta, L., Cappelletti, M., Severi, C., and Matarrese, P. (2021). The impact of oxidative stress in human pathology: Focus on gastrointestinal disorders. Antioxidants (Basel), 10(2), 201.

Walker, M. (2022). Human skin through the ages. International Journal of Pharmaceutics, 622, 121850.

Wang, Y., Zhu, Y., Yu, S., and Jiang, C. (2017). Fluorescent carbon dots: Rational synthesis, tunable optical properties and analytical applications. RSC Advances, 7(65), 40973–40989.

Xiao, F., Xu, T., Lu, B., and Liu, R. (2020). Guidelines for antioxidant assays for food components. Food Frontiers, 1(1), 60–69.

Yang, K., Zhang, L., Liao, P., Xiao, Z., Zhang, F., Sindaye, D., Xin, Z., Tan, C., Deng, J., Yin, Y., and Deng, B. (2020). Impact of gallic acid on gut health: Focus on the gut microbiome, immune response, and mechanisms of action. Frontiers in Immunology, 11, 580208.