Development of taste-masked enteric granules containing diclofenac sodium utilizing Eudragit® E PO as a taste-masking agent

Main Article Content

Kanokporn Burapapadh
Pawanda Warintaksa
Sanphat Ruksapram
Phennapha Saokham

Abstract

This study aimed to develop a taste-masking method for Eudragit® L 100-based enteric microparticles containing diclofenac sodium (DS) using Eudragit® E PO and to determine the optimal polymer ratio for effective taste-masking. The taste-masked enteric granules (TEGs) were fabricated via rotary evaporation with dichloromethane as the solvent, with enteric microparticle-to-Eudragit® E PO weight ratios of 1:0.1, 1:0.25, 1:0.5, and 1:1. Reducing the polymer ratio to 0.1 caused enteric microparticles to disperse independently from the polymer, while higher ratios embedded them in the polymeric carrier. To evaluate the taste-masking efficiency of TEGs, drug release in 10-mL simulated salivary fluid (SSF) was tested. The results revealed that increasing the polymer ratio enhanced the inhibition of drug release in SSF, indicating improved taste masking. However, in the in vitro drug dissolution in a two-stage biorelevant medium, TEGs with high polymer ratios of 1 and 0.5 released only 69.80±1.47% and 78.87±1.21% of DS after 3 h in the buffer stage dissolution, while TEGs with lower polymer ratios of 0.25 and 0.1 exhibited higher drug release percentages of 92.61±1.23% and 97.14±0.58%, respectively. From this study, the optimal enteric particle-to-Eudragit® E PO ratio was 1:0.25, effectively masking the bitter taste of DS while minimally affecting drug release in a gastrointestinal-mimicking environment.

Downloads

Download data is not yet available.

Article Details

How to Cite
Burapapadh, K., Warintaksa, P., Ruksapram, S., & Saokham, P. (2024). Development of taste-masked enteric granules containing diclofenac sodium utilizing Eudragit® E PO as a taste-masking agent. Science, Engineering and Health Studies, 18, 24050016. https://doi.org/10.69598/sehs.18.24050016
Section
Health sciences

References

Adamkiewicz, L., and Szeleszczuk, Ł. (2023). Review of applications of cyclodextrins as taste-masking excipients for pharmaceutical purposes. Molecules, 28(19), 6964.

Albertini, B., Cavallari, C., Passerini, N., Voinovich, D., González-Rodríguez, M. L., Magarotto, L., and Rodriguez, L. (2004). Characterization and taste-masking evaluation of acetaminophen granules: Comparison between different preparation methods in a high-shear mixer. European Journal of Pharmaceutical Sciences, 21(2–3), 295–303.

Alotaibi, H. F., Elsamaligy, S., Mahrous, G. M., Bayomi, M. A., and Mahmoud, H. A. (2019). Design of taste masked enteric orodispersible tablets of diclofenac sodium by applying fluid bed coating technology. Saudi Pharmaceutical Journal, 27(3), 354–362.

Bora, D., Borude, P., and Bhise, K. (2008). Taste masking by spray-drying technique. AAPS PharmSciTech, 9(4), 1159–1164.

Burapapadh, K., Warintaksa, P., Raksapram, S., and Saokham, P. (2024). Development of enteric diclofenac sodium microparticles through a spray-drying process facilitated by different aqueous dispersion systems. Journal of Current Science and Technology, 14(3), 53.

Comunian, T. A., Thomazini, M., Alves, A. J. G., de Matos Junior, F. E., de Carvalho Balieiro, J. C., and Favaro-Trindade, C. S. (2013). Microencapsulation of ascorbic acid by complex coacervation: Protection and controlled release. Food Research International, 52(1), 373–379.

Drašković, M., Medarević, D., Aleksić, I., and Parojčić, J. (2017). In vitro and in vivo investigation of taste-masking effectiveness of Eudragit E PO as drug particle coating agent in orally disintegrating tablets. Drug Development and Industrial Pharmacy, 43(5), 723–731.

El-Badry, M., Alanazi, F. K., Mahrous, G. M., and Alsarra, I. A. (2010). Effects of Kollicoat IR® and hydroxypropyl-β-cyclodextrin on the dissolution rate of omeprazole from its microparticles and enteric-coated capsules. Pharmaceutical Development and Technology, 15(5), 500–510.

Felton, L. A. (2018). Use of polymers for taste-masking pediatric drug products. Drug Development and Industrial Pharmacy, 44(7), 1049–1055.

Forster, S. P., and Lebo, D. B. (2021). Continuous melt granulation for taste-masking of ibuprofen. Pharmaceutics, 13(6), 863.

Gad, M., Zaazaa, H., Amer, S., and Korany, M. (2015). Static headspace gas chromatographic method for the determination of residual solvents in cephalosporins. RSC Advances, 5(22), 17150–17159.

Gao, Y., Cui, F. de, Guan, Y., Yang, L., Wang, Y.-S., and Zhang, L.-N. (2006). Preparation of roxithromycin-polymeric microspheres by the emulsion solvent diffusion method for taste masking. International Journal of Pharmaceutics, 318(1–2), 62–69.

Georgieva, Y., Kassarova, M., Kokova, V., Apostolova, E., and Pilicheva, B. (2020). Taste masking of enalapril maleate by microencapsulation in Eudragit EPO® microparticles. Pharmazie, 75(2–3), 61–69.

Giron, D. (1998). Contribution of thermal methods and related techniques to the rational development of pharmaceuticals—Part 1. Pharmaceutical Science & Technology Today, 1(5), 191–199.

Joshi, S., and Petereit, H. U. (2013). Film coatings for taste masking and moisture protection. International Journal of Pharmaceutics, 457(2), 395–406.

Lenik, J., Wesoły, M., Ciosek, P., and Wróblewski, W. (2016). Evaluation of taste masking effect of diclofenac using sweeteners and cyclodextrin by a potentiometric electronic tongue. Journal of Electroanalytical Chemistry, 780, 153–159.

Lin, S. Y., and Yu, H. L. (1999). Thermal stability of methacrylic acid copolymers of Eudragits L, S, and L30D and the acrylic acid polymer of carbopol. Journal of Polymer Science, Part A: Polymer Chemistry, 37(13), 2061–2067.

Liu, F., Ranmal, S., Batchelor, H. K., Orlu-Gul, M., Ernest, T. B., Thomas, I. W., Flanagan, T., and Tuleu, C. (2014). Patient-centred pharmaceutical design to improve acceptability of medicines: Similarities and differences in paediatric and geriatric populations. Drugs, 74(16), 1871–1889.

Liu, W. Y., Hsieh, Y. S., Ko, H. H., and Wu, Y. T. (2023). Formulation approaches to crystalline status modification for carotenoids: Impacts on dissolution, stability, bioavailability, and bioactivities. Pharmaceutics, 15(2), 485.

Maniruzzaman, M., Boateng, J. S., Bonnefille, M., Aranyos, A., Mitchell, J. C., and Douroumis, D. (2012). Taste masking of paracetamol by hot-melt extrusion: An in vitro and in vivo evaluation. European Journal of Pharmaceutics and Biopharmaceutics, 80(2), 433–442.

Marques, M. R. C., Löbenberg, R., and Almukainzi, M. (2011). Simulated biological fluids with possible application in dissolution testing. Dissolution Technologies, 18(3), 15–28.

Moustafine, R. I., Bukhovets, A. v., Sitenkov, A. Y., Kemenova, V. A., Rombaut, P., and van den Mooter, G. (2013). Eudragit® E PO as a complementary material for designing oral drug delivery systems with controlled release properties: Comparative evaluation of new interpolyelectrolyte complexes with countercharged Eudragit® L 100 copolymers. Molecular Pharmaceutics, 10(7), 2630–2641.

Nishiyama, T., Ogata, T., and Ozeki, T. (2016). Preparation of bitter taste-masking granules of lafutidine for orally disintegrating tablets using water-insoluble/soluble polymer combinations. Journal of Drug Delivery Science and Technology, 32(part A), 38–42.

Nollenberger, K., and Albers, J. (2013). Poly(meth)acrylate-based coatings. International Journal of Pharmaceutics, 457(2), 461–469.

Petrovick, G. F., Breitkreutz, J., and Pein-Hackelbusch, M. (2016). Taste-masking properties of solid lipid based micropellets obtained by cold extrusion-spheronization. International Journal of Pharmaceutics, 506(1–2), 361–370.

Polli, J. E., Rekhi, G. S., Augsburger, L. L., and Shah, V. P. (1997). Methods to compare dissolution profiles and a rationale for wide dissolution specifications for metoprolol tartrate tablets. Journal of Pharmaceutical Sciences, 86(6), 690–700.

Rowe, R. C., Sheskey, P. J., Cook, W. G., and Fenton, M.E. (2012). Handbook of Pharmaceutical Excipients, London: Pharmaceutical Press.

Sangnim, T., and Huanbutta, K. (2019). Development and evaluation of taste-masked paracetamol chewable tablets using a polymer and/or wax dispersion technique. Journal of Drug Delivery Science and Technology, 54, 101361.

Schiffman, S. S., Zervakis, J., Westall, H. L., Graham, B. G., Metz, A., Bennett, J. L., and Heald, A. E. (2000). Effect of antimicrobial and anti-inflammatory medications on the sense of taste. Physiology and Behavior, 69(4–5), 413–424.

Shirai, Y., Sogo, K., Fujioka, H., and Nakamura, Y. (1996). Influence of heat treatment on dissolution and masking degree of bitter taste for a novel fine granule system. Chemical & Pharmaceutical Bulletin, 44(2), 399–402.

The United States Pharmacopeial Convention Committee of Revision. (2024a). <711> Dissolution. In USP-NF 2024: U. S. Pharmacopoeia and National Formulary, Rockville, MD: United States Pharmacopeia.

The United States Pharmacopeial Convention Committee of revision. (2024b). <467> Residual solvents. In USP-NF 2024: U. S. Pharmacopoeia and National Formulary, Rockville, MD: United States Pharmacopeia.

Yan, D. Y., Woo, J. S., Kang, J. H. Yong, C. S., and Choi, H. G. (2010). Preparation and evaluation of taste-masked donepezil hydrochloride orally disintegrating tablets. Biological and Pharmaceutical Bulletin, 33(8), 1364–1370.

Yi, E. J., Kim, J. Y., Rhee, Y. S., Kim, S. H., Lee, H. J., Park, C. W., and Park, E. S. (2014). Preparation of sildenafil citrate microcapsules and in vitro/in vivo evaluation of taste masking efficiency. International Journal of Pharmaceutics, 466(1–2), 286–295.

Yoshida, M., Haraguchi, T., and Uchida, T. (2014). Bitterness evaluation of acidic pharmaceutical substances (NSAIDs) using a taste sensor. Chemical & Pharmaceutical Bulletin, 62(12), 1252–1258.