Monte Carlo Dosing Simulations of Topical Terpinen-4-ol from Zingiber cassumunar (Plai) Oil against Cutibacterium acnes and Staphylococcus aureus

Main Article Content

Ei Ei Win
Kotchaphan Chooluck
Wichit Nosoongnoen

Abstract

Zingiber cassumunar Roxb or plai oil contains terpinen-4-ol (T4) as a major component possessing antimicrobial effects. However, data regarding optimal antimicrobial dosages of topical T4 is limited.  This study aimed to develop and validate gas chromatographic-mass spectrometric (GC-MS) methods for quantifying and investigating physicochemical properties of T4. The effective dosage regimens against Cutibacterium acnes and Staphylococcus aureus were predicted using Monte Carlo simulation. The results demonstrated that the solubility of T4 was higher than that of plai oil and the log Kow of T4 and plai oil were in the range of 0.73-2.83 and 0.77-2.88, respectively. Simulation analysis suggested topical T4 dosage regimens of 1.50 g/cm2 and 2.00 g/cm2 in every 12 h to suppress C. acne with MIC 1489.60 µg/mL and S. aureus with MIC 2327.50 µg/mL, respectively to achieve the PKPD targets of Cmax > MIC 1 and AUC > MIC 2. The dosing conversion to the plai oil topical dosage regimens were 3.13 g/cm2 and 4.17 g/cm2 in every 12 h, respectively. At higher MIC or PKPD target for either Cmax > MIC 2 or enhanced T4 penetration, T4 and plai oil topical dosage regimens were 2.70 g/cm2 and 5.63 g/cm2 in every 12 h, respectively.

Downloads

Download data is not yet available.

Article Details

How to Cite
Win, E. E., Chooluck, K., & Nosoongnoen, W. (2025). Monte Carlo Dosing Simulations of Topical Terpinen-4-ol from Zingiber cassumunar (Plai) Oil against Cutibacterium acnes and Staphylococcus aureus. Science, Engineering and Health Studies, 19, 25050021. https://doi.org/10.69598/sehs.19.25050021
Section
Health sciences

References

Alshiekheid, M. A., Dwiningsih, Y., Sabour, A. A., & Alkahtani, J. (2022). Phytochemical composition and antibacterial activity of Zingiber cassumunar Roxb. against agricultural and foodborne pathogens. Preprints, Article 2022080511. https://doi.org/10.20944/Preprints202208.0511.v1

AOAC. (2002). Guidelines for single laboratory validation of chemical methods for dietary supplements and botanicals. Association of Official Analytical Chemistry. https://s27415.pcdn.co/wp-content/uploads/2020/01/64ER20-7/Validation_Methods/d-AOAC_Guidelines_For_Single_Laboratory_Validation_Dietary_Supplements_and_Botanicals.pdf

Asín-Prieto, E., Rodríguez-Gascón, A., & Isla, A. (2015). Applications of the pharmacokinetic/pharmacodynamic (PK/PD) analysis of antimicrobial agents. Journal of Infection and Chemotherapy, 21(5), 319–329. https://doi.org/10.1016/j.jiac.2015.02.001

Cal, K. (2006). Aqueous solubility of liquid monoterpenes at 293 K and its relationship with the calculated log P value. Yakugaku Zasshi, 126(4), 307–309. https://doi.org/10.1248/yakushi.126.307

Cao, W., Tian, R., Pan, R., Sun, B., Xiao, C., Chen, Y., Zeng, Z., & Lei, S. (2022). Terpinen-4-ol inhibits the proliferation and mobility of pancreatic cancer cells by downregulating Rho-associated coiled-coil containing protein kinase 2. Bioengineered, 13(4), 8643–8656. https://doi.org/10.1080/21655979.2022.2054205

Carson, C. F., Hammer, K. A., & Riley, T. V. (2006). Melaleuca alternifolia (Tea Tree) oil: A review of its antimicrobial and other medicinal properties. Clinical Microbiology Reviews, 19(1), 50–62. https://doi.org/10.1128/CMR.19.1.50-62.2006

Chongmelaxme, B., Sruamsiri, R., Dilokthornsakul, P., Dhippayom, T., Kongkaew, C., Saokaew, S., Chuthaputti, A., & Chaiyakunapruk, N. (2017). Clinical effects of Zingiber cassumunar (Plai): A systematic review. Complementary Therapies in Medicine, 35, 70–77. https://doi.org/10.1016/j.ctim.2017.09.009

Chooluck, K., Singh, R. P., Sathirakul, K., & Derendorf, H. (2012). Dermal pharmacokinetics of terpinen-4-ol following topical administration of Zingiber cassumunar (Plai) oil. Planta Medica, 78(16), 1761–1766. https://doi.org/10.1055/s-0032-1315262

Chooluck, K., Singh, R. P., Sathirakul, K., & Derendorf, H. (2013). Plasma and dermal pharmacokinetics of terpinen-4-ol in rats following intravenous administration. Die Pharmazie, 68(2), 135–140. https://doi.org/10.1691/ph.2013.2116

Cordeiro, L., Figueiredo, P., Souza, H., Sousa, A., Andrade-Júnior, F., Medeiros, D., Nóbrega, J., Silva, D., Martins, E., Barbosa-Filho, J., & Lima, E. (2020). Terpinen-4-ol as an antibacterial and antibiofilm agent against Staphylococcus aureus. International Journal of Molecular Sciences, 21(12), Article 4531. https://doi.org/10.3390/ijms21124531

Cox, S. D., Mann, C. M., & Markham, J. L. (2001). Interactions between components of the essential oil of Melaleuca alternifolia. Journal of Applied Microbiology, 91(3), 492–497. https://doi.org/10.1046/j.1365-2672.2001.01406.x

Dong, L., Liu, C., Cun, D., & Fang, L. (2015). The effect of rheological behavior and microstructure of the emulgel on the release and permeation profiles of Terpinen-4-ol. European Journal of Pharmaceutical Sciences, 78, 140–150. https://doi.org/10.1016/j.ejps.2015.07.003

Griffin, S., Wyllie, S. G., & Markham, J. (1999). Determination of octanol-water partition coefficient for terpenoids using reversed-phase high-performance liquid chromatography. Journal of Chromatography A, 864(2), 221–228. https://doi.org/10.1016/S0021-9673(99)01009-2

Han, A. R., Kim, H., Piao, D., Jung, C. H., & Seo, E. K. (2021). Phytochemicals and bioactivities of Zingiber cassumunar Roxb. Molecules (Basel, Switzerland), 26(8), Article 2377. https://doi.org/10.3390/molecules26082377

Hart, P., Brand, C., Carson, C., Riley, T. V., Prager, R. H., & Finlay-Jones, J. J. (2000). Terpinen-4-ol, the main component of the essential oil of Melaleuca alternifolia (tea tree oil), suppresses inflammatory mediator production by activated human monocytes. Inflammation Research, 49(11), 619–626. https://doi.org/10.1007/s000110050639

Hazarika, N. (2021). Acne vulgaris: New evidence in pathogenesis and future modalities of treatment. Journal of Dermatological Treatment, 32(3), 277–285. https://doi.org/10.1080/09546634.2019.1654075

Janpim, K., Sakkumduang, W., Nualkaew, S., & Priprem, A. (2011, October 24–25). Development of plai [Conference session]. The 2nd International Conference on Applied Science (ICAS) and the 3rd International Conference on Science and Technology for Sustainable Development of The Greater Mekong Sub-Region (STGMS). Souphanouvong University, Luang Prabang, Lao.

Johansen, B., Duval, R. E., & Sergere, J.-C. (2022). First evidence of a combination of terpinen-4-ol and α-terpineol as a promising drug against ESKAPE pathogens. Molecules, 27(21), Article 7472. https://doi.org/10.3390/molecules27217472

Karadag, A. S., Aslan Kayıran, M., Wu, C.-Y., Chen, W., & Parish, L. C. (2021). Antibiotic resistance in acne: Changes, consequences and concerns. Journal of the European Academy of Dermatology and Venereology, 35(1), 73–78. https://doi.org/10.1111/jdv.16686

Kirschbaum, J. O., & Kligman, A. M. (1963). The pathogenic role of Corynebacterium Acnes in acne vulgaris. JAMA Dermatology, 88(6), 832–833. https://doi.org/10.1001/archderm.1963.01590240156026

Lee, C.-J., Chen, L.-W., Chen, L.-G., Chang, T.-L., Huang, C.-W., Huang, M.-C., & Wang, C.-C. (2013). Correlations of the components of tea tree oil with its antibacterial effects and skin irritation. Journal of Food and Drug Analysis, 21(2), 169–176. https://doi.org/10.1016/j.jfda.2013.05.007

Legiawati, L., Halim, P. A., Fitriani, M., Hikmahrachim, H. G., & Lim, H. W. (2023). Microbiomes of acne vulgaris and their susceptibility to antibiotics in Indonesia: A systematic review and meta-analysis. Antibiotics, 12(1), Article 145. https://doi.org/10.3390/antibiotics12010145

Limwattananon, C., Rattanachotphanit, T., Cheawchanwattana, A., Waleekhachonloet, O., Giwanon, R., Choonhakarn, C., Sripanidkulchai, B., & Sakolchai, S. (2008). Clinical efficacy of Plai gel containing 1% plai oil for treating mild to moderate acne vulgaris. Isan Journal of Pharmaceutical Sciences, 4(2), 121–133. https://doi.org/10.14456/ijps.2008.23

Mondello, F., Fontana, S., Scaturro, M., Girolamo, A., Colone, M., Stringaro, A., Vito, M. D., & Ricci, M. L. (2022). Terpinen-4-ol, the main bioactive component of tea tree oil, as an innovative antimicrobial agent against Legionella pneumophila. Pathogens, 11(6), Article 682. https://doi.org/10.3390/pathogens11060682

Nurzyńska-Wierdak, R., Pietrasik, D., & Walasek-Janusz, M. (2023). Essential oils in the treatment of various types of acne—A review. Plants, 12(1), Article 90. https://doi.org/10.3390/plants12010090

Pithayanukul, P., Tubprasert, J., & Wuthi-Udomlert, M. (2007). In vitro antimicrobial activity of Zingiber cassumunar (Plai) oil and a 5% plai oil gel. Phytotherapy Research, 21(2), 164–169. https://doi.org/10.1002/ptr.2048

Rahman, M. A., Sultana, A., Khan, M. F., Boonhok, R., & Afroz, S. (2023). Tea tree oil, a vibrant source of neuroprotection via neuroinflammation inhibition: A critical insight into repurposing Melaleuca alternifolia by unfolding its characteristics. Journal of Zhejiang University-Science B, 24(7), 554–573. https://doi.org/10.1631/jzus.B2300168

Raman, A., Weir, U., & Bloomfield, S. F. (1995). Antimicrobial effects of tea-tree oil and its major components on Staphylococcus aureus, Staph. epidermidis and Propionibacterium acnes. Letters in Applied Microbiology, 21(4), 242–245. https://doi.org/10.1111/j.1472-765X.1995.tb01051.x

Roberts, J. A., Kirkpatrick, C. M., & Lipman, J. (2011). Monte Carlo simulations: Maximizing antibiotic pharmacokinetic data to optimize clinical practice for critically ill patients. Journal of Antimicrobial Chemotherapy, 66(2), 227–231. https://doi.org/10.1093/jac/dkq449

Roberts, M. S., Cheruvu, H. S., Mangion, S. E., Alinaghi, A., Benson, H. A. E., Mohammed, Y., Holmes, A., van der Hoek, J., Pastore, M. & Grice, J. E. (2021). Topical drug delivery: History, percutaneous absorption, and product development. Advanced Drug Delivery Reviews, 177, Article 113929. https://doi.org/10.1016/j.addr.2021.113929

Sharifi-Rad, J., Salehi, B., Varoni, E. M., Sharopov, F., Yousaf, Z., Ayatollahi, S. A., Kobarfard, F., Sharifi-Rad, M., Afdjei, M. H., Sharifi-Rad, M., & Iriti, M. (2017). Plants of the Melaleuca genus used as antimicrobial agents: From farm to pharmacy. Phytotherapy Research, 31(10), 1475–1494. https://doi.org/10.1002/ptr.5880

Shukla, T., Upmanyu, N., Agrawal, M., Saraf, S., Saraf, S., & Alexander, A. (2018). Biomedical applications of microemulsion through dermal and transdermal route. Biomedicine & Pharmacology, 108, 1477–1494. https://doi.org/10.1016/j.biopha.2018.10.021

Singsai, K., Charoongchit, P., & Utsintong, M. (2022). The comparison of the oil types in Plai (Zingiber cassumunar) oil extraction and analysis of the chemical constituents in plai oil by gas chromatography-mass spectrometry technique. Health Science, Science and Technology Reviews, 15(3), 18–28. [in Thai]

Songkro, S., Wungsintaweekul, J., & Chartwaingam, S. (2008). Investigation of the enhancing activity and skin irritation of Zingiber officinale, Zingiber cassumunar, and Curcuma zedoaria. Journal of Drug Delivery Science and Technology, 18(3), 169–179. https://doi.org/10.1016/S1773-2247(08)50033-5

Sukatta, U., Rugthaworn, P., Punjee, P., Chidchenchey, S., & Keeratinijakal, V. (2009). Chemical composition and physical properties of oil from Plai (Zingiber cassumunar Roxb.) obtained by hydro distillation and hexane extraction. Agriculture and Natural Resources, 43(5), 212–217.

Surassmo, S., Srinuanchai, W., Yostawonkul, J., & Ruktanonchai, U. (2013). Formulation development of plai nanoemulsion based on the influence of surfactant combinations. Chiang Mai Journal of Science, 40(6), 994–999.

Tandirogang, N., Anitasari, S., Arung, E. T., Paramita, S., & Shen, Y. K. (2022). Evaluation of the antibacterial properties of Zingiber purpureum essential oil against 13 different gram-positive and gram-negative bacteria. Indonesian Biomedical Journal, 14(3), 303–308. https://doi.org/10.18585/inabj.v14i3.1967

Thai Industrial Standards Institute. (2019). Thai industrial standard for Phlai essential oil (TIS 1679–2541). Ministry of Industry. https://service.tisi.go.th/tisi-standard-shop/item/tis/4575 [in Thai]

Tian, Q., Quan, P., Fang, L., Xu, H., & Liu, C. (2021). A molecular mechanism investigation of the transdermal/topical absorption classification system based on drug skin permeation and skin retention. International Journal of Pharmaceutics, 608, Article 121082. https://doi.org/10.1016/j.ijpharm.2021.121082

Vilas-Boas, S. M., da Costa, M. C., Coutinho, J. A. P., Ferreira, O., & Pinho, S. P. (2022). Octanol−water partition coefficients and aqueous solubility data of monoterpenoids: Experimental, modeling, and environmental distribution. Industrial & Engineering Chemistry Research, 61(8), 3154–3167. https://doi.org/10.1021/acs.iecr.1c04196

Vinks, A. A., Derendorf, H., & Mouton, J. W. (2014). Fundamentals of antimicrobial pharmacokinetics and pharmacodynamics. Springer. https://doi.org/10.1007/978-0-387-75613-4

Walsh, T. R., Efthimiou, J., & Dréno, B. (2016). Systematic review of antibiotic resistance in acne: An increasing topical and oral threat. The Lancet Infectious Diseases, 16(3), e23–e33. https://doi.org/10.1016/S1473-3099(15)00527-7

Yasin, M., Younis, A., Javed, T., Akram, A., Ahsan, M., Shabbir, R., Ali, M. M., Tahir, A., El-Ballat, E. M., Sheteiwy, M. S., Sammour, R. H., Hano, C., Alhumaydhi, F. A., & El-Esawi, M. A. (2021). River tea tree oil: Composition, antimicrobial and antioxidant activities, and potential applications in agriculture. Plants, 10(10), Article 2105. https://doi.org/10.3390/plants10102105