Effects of ultrasonic mixing time and microwave irradiation time on biodiesel production from crude tung oil
Main Article Content
Abstract
Biodiesel is an eco-friendly alternative energy source for diesel engines that can be synthesized by the transesterification of vegetable oil or animal fat with alcohol. Tung oil (Vernicia montana Lour.) has poor oxidation stability due to the reactivity of the conjugated carbon–carbon double bonds in the constituent α-eleostearic acid. The ultrasonic and microwave-assisted transesterification of tung oil in the presence of an alkaline oxide catalyst was investigated. A laboratory batch process was optimized within parameter ranges for 28 kHz ultrasound mixing (5–20 min), microwave heating (0.5–3 min), methanol-to-oil molar ratio (3–9:1), and KOH catalyst concentration (0.5–1.5% w/w). The maximum transesterification yield was 93.68 ± 1.79%, with a higher heating value of 42.33 MJ/kg, a viscosity of 7.86 cSt, and a fatty acid methyl ester content of 98.83% w/w. The optimal procedure involved 15 minutes of ultrasonic mixing and 2 minutes of microwave heating at a methanol-to-oil molar ratio of 8:1 and a KOH concentration of 1.25% w/w at 60 ± 5°C. The optimized combination of ultrasonic mixing and microwave heating significantly improved the process conditions and product profile, indicating this technique to be an alternative to conventional methods of producing biodiesel.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Almasi, S., Ghobadian, B., Najafi, G. H., Yusaf, T., Dehghani Soufi, M., & Hoseini, S. S. (2019). Optimization of an ultrasonic-assisted biodiesel production process from one genotype of rapeseed (TERI (OE) R-983) as a novel feedstock using response surface methodology. Energies, 12(14), Article 2656. https://doi.org/10.3390/en12142656
Berchmans, H. J., & Hirata, S. (2008). Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresource Technology, 99(6), 1716–1721. https://doi.org/10.1016/j.biortech.2007.03.051
Boonmee, K., Chuntranuluck, S., Punsuvon, V., & Silayoi, P. (2010). Optimization of biodiesel production from Jatropha oil (Jatropha curcas L.) using response surface methodology. Agriculture and Natural Resources, 44(2), 290–299.
Chen, Y.-H., Chen, J.-H., Chang, C.-Y., & Chang, C.-C. (2010). Biodiesel production from tung (Vernicia montana) oil and its blending properties in different fatty acid compositions. Bioresource Technology, 101(24), 9521–9526. https://doi.org/10.1016/j.biortech.2010.06.117
Chitra, P., Venkatachalam, P., & Sampathrajan, A. (2005). Optimisation of experimental conditions for biodiesel production from alkali-catalysed transesterification of Jatropha curcus oil. Energy for Sustainable Development, 9(3), 13–18. https://doi.org/10.1016/S0973-0826(08)60518-9
Dubé, M. A., Tremblay, A. Y., & Liu, J. (2007). Biodiesel production using a membrane reactor. Bioresource Technology, 98(3), 639–647. https://doi.org/10.1016/j.biortech.2006.02.019
Duvekot, C. (2020). Determination of total FAME and linolenic acid methyl esters in biodiesel according to EN-14103. Agilent Technologies.
El-Araby, R., Amin, A., El Morsi, A. K., El-Ibiari, N. N., & El-Diwani, G. I. (2018). Study on the characteristics of palm oil–biodiesel–diesel fuel blend. Egyptian Journal of Petroleum, 27(2), 187–194. https://doi.org/10.1016/j.ejpe.2017.03.002
Fan, X., Wang, X., & Chen, F. (2010). Ultrasonically assisted production of biodiesel from crude cottonseed oil. International Journal of Green Energy, 7(2), 117–127. https://doi.org/10.1080/154350710
Harish, H., Rajanna, S., Prakash, G. S., & Ahamed, S. M. (2021). Extraction of biodiesel from tung seed oil and evaluating the performance and emission studies on 4-stroke CI engine. Materials Today: Proceedings, 46(Part 10), 4869–4877. https://doi.org/10.1016/j.matpr.2020.10.328
Hsiao, M.-C., Lin, C.-C., Chang, Y.-H., & Chen, L.-C. (2010). Ultrasonic mixing and closed microwave irradiation-assisted transesterification of soybean oil. Fuel, 89(12), 3618–3622. https://doi.org/10.1016/j.fuel.2010.07.044
Kongkasawan, J., & Capareda, S. (2012). Jatropha oil refining process and biodiesel conversion: Mass and energy balance. International Energy Journal, 13(4), 169–176.
Kord, M., Sadrameli, S. M., & Ghobadian, B. (2016). Optimization of biodiesel production from castor oil using a microwave via response surface methodology (RSM). Journal of Renewable Energy and Environment, 3(4), 1–9. https://doi.org/10.30501/jree.2016.70094
Leadbeater, N. E., & Stencel, L. M. (2006). Fast, easy preparation of biodiesel using microwave heating. Energy & Fuels, 20(5), 2281–2283. https://doi.org/10.1021/ef060163u
Maddikeri, G. L., Pandit, A. B., & Gogate, P. R. (2012). Intensification approaches for biodiesel synthesis from waste cooking oil: A review. Industrial & Engineering Chemistry Research, 51(45), 14610–14628. https://doi.org/10.1021/ie301675j
Manh, D.-V., Chen, Y.-H., Chang, C.-C., Chang, C.-Y., Hanh, H.-D., Chau, N.-H., Tuyen, T.-V., Long, P.-Q., & Minh, C.-V. (2012). Effects of blending composition of tung oil and ultrasonic irradiation intensity on the biodiesel production. Energy, 48(1), 519–524. https://doi.org/10.1016/j.energy.2012.09.065
Martinez-Guerra, E., & Gude, V. G. (2015). Continuous and pulse sonication effects on transesterification of used vegetable oil. Energy Conversion and Management, 96, 268–276. https://doi.org/10.1016/j.enconman.2015.02.073
Meher, L. C., Sagar, D. V., & Naik, S. N. (2006). Technical aspects of biodiesel production by transesterification—a review. Renewable and Sustainable Energy Reviews, 10(3), 248–268. https://doi.org/10.1016/j.rser.2004.09.002
Milano, J., Ong, H. C., Masjuki, H. H., Silitonga, A. S., Chen, W.-H., Kusumo, F., Dharma, S., & Sebayang, A. H. (2018). Optimization of biodiesel production by microwave irradiation-assisted transesterification for waste cooking oil-Calophyllum inophyllum oil via response surface methodology. Energy Conversion and Management, 158, 400–415. https://doi.org/10.1016/j.enconman.2017.12.027
Nakpong, P., & Wootthikanokkhan, S. (2010). High free fatty acid coconut oil as a potential feedstock for biodiesel production in Thailand. Renewable Energy, 35(8), 1682–1687. https://doi.org/10.1016/j.renene.2009.12.004
Ozturk, G., Kafadar, A. B., Duz, M. Z., Saydut, A., & Hamamci, C. (2010). Microwave assisted transesterification of maize (Zea mays L.) oil as a biodiesel fuel. Energy Exploration & Exploitation, 28(1), 47–57. https://doi.org/10.1260/0144-5987.28.1.47
Park, J.-Y., Kim, D.-K., Wang, Z.-M., Lu, P., Park, S.-C., & Lee, J.-S. (2008). Production and characterization of biodiesel from tung oil. Applied Biochemistry and Biotechnology, 148(1–3), 109–117. https://doi.org/10.1007/s12010-007-8082-2
Phukan, M. M., Singh, S. P., Phukon, P., Borah, T., Konwar, B. K., & Dutta, N. (2013). Production and statistical optimization of biodiesel from kitchen chimney dump lard. Sustainable Chemical Processes, 1, Article 12. https://doi.org/10.1186/2043-7129-1-12
Pradana, Y. S., Hidayat, A., Prasetya, A., & Budiman, A. (2017). Biodiesel production in a reactive distillation column catalyzed by heterogeneous potassium catalyst. Energy Procedia, 143, 742–747. https://doi.org/10.1016/j.egypro.2017.12.756
Shang, Q., Jiang, W., Lu, H., & Liang, B. (2010). Properties of tung oil biodiesel and its blends with 0# diesel. Bioresource Technology, 101(2), 826–828. https://doi.org/10.1016/j.biortech.2009.08.047
Sivaprakasam, S., & Saravanan, C. G. (2007). Optimization of the transesterification process for biodiesel production and use of biodiesel in a compression ignition engine. Energy & Fuels, 21(5), 2998–3003. https://doi.org/10.1021/ef060516p
Talebian-Kiakalaieh, A., Amin, N. A. S., & Mazaheri, H. (2013). A review on novel processes of biodiesel production from waste cooking oil. Applied Energy, 104, 683–710. https://doi.org/10.1016/j.apenergy.2012.11.061
Teixeira, L. S. G., Assis, J. C. R., Mendonça, D. R., Santos, I. T. V., Guimarães, P. R. B., Pontes, L. A. M., & Teixeira, J. S. R. (2009). Comparison between conventional and ultrasonic preparation of beef tallow biodiesel. Fuel Processing Technology, 90(9), 1164–1166. https://doi.org/10.1016/j.fuproc.2009.05.008
Tippayawong, N., & Sittisun, P. (2012). Continuous-flow transesterification of crude jatropha oil with microwave irradiation. Scientia Iranica, 19(5), 1324–1328. https://doi.org/10.1016/j.scient.2012.08.004
Tiwari, A. K., Kumar, A., & Raheman, H. (2007). Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: An optimized process. Biomass and Bioenergy, 31(8), 569–575. https://doi.org/10.1016/j.biombioe.2007.03.003
Yang, J., Feng, Y., Zeng, T., Guo, X., Li, L., Hong, R., & Qiu, T. (2017). Synthesis of biodiesel via transesterification of tung oil catalyzed by new Brönsted acidic ionic liquid. Chemical Engineering Research and Design, 117, 584–592. https://doi.org/10.1016/j.cherd.2016.09.038
Zhang, L., Liu, M., Long, H., Dong, W., Pasha, A., Esteban, E., Li, W., Yang, X., Li, Z., Song, A., Ran, D., Zhao, G., Zeng, Y., Chen, H., Zou, M., Li, J., Liang, F., Xie, M., Hu, J., . . . Tan, X. (2019). Tung tree (Vernicia Fordii) genome provides a resource for understanding genome evolution and improved oil production. Genomics, Proteomics & Bioinformatics, 17(6), 558–575.