Nanocomposite patches for transdermal drug delivery: A review
Main Article Content
Abstract
Transdermal drug delivery encounters limitations due to skin’s barrier resistance, which restricts drug penetration. Only small, lipophilic drugs can easily cross the skin, limiting the range of deliverable compounds. Variability in skin thickness and condition further affects drug absorption and efficacy. In addition, potential skin irritation or allergic reactions present safety concerns. Overcoming these barriers requires advanced formulations and technologies to enhance drug delivery efficiency and safety. Recent advancements in transdermal drug delivery have led to the development of nanocomposite systems that integrate biocompatible polymers with nanoparticles (NPs) to optimize drug transport across the skin barrier. These nanocomposites offer controlled release kinetics, ensuring sustained therapeutic drug levels while minimizing systemic side effects. By enhancing skin permeability and overcoming challenges such as poor drug solubility and inconsistent absorption rates, they enable effective delivery of both hydrophobic and hydrophilic drugs. The versatility of nanocomposites allows for precise customization of drug release profiles, tailored to specific therapeutic needs and patient requirements. This technology shows promise in improving patient compliance and therapeutic outcomes, offering a viable alternative to conventional drug delivery methods. Ongoing research focuses on refining nanocomposite formulations to enhance efficacy, scalability, and regulatory approval, aiming to expand their clinical applications across various medical fields. This review article provides a comprehensive overview of NPs widely used in transdermal delivery, including lipid-based, polymeric-based, and inorganic NPs. It also discusses types of transdermal patches, such as reservoir, matrix, drug-in-adhesive, and hydrogel patches. In addition, biomedical applications, limitations and future perspectives are thoroughly addressed.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Adepu, S., and Ramakrishna, S. (2021). Controlled drug delivery systems: Current status and future directions. Molecules, 26(19), 5905.
Agnihotri, S., Mukherji, S., and Mukherji, S. (2012). Antimicrobial chitosan–PVA hydrogel as a nanoreactor and immobilizing matrix for silver nanoparticles. Applied Nanoscience, 2(3), 179–188.
Ahmad, Z., Salman, S., Khan, S. A., Amin, A., Rahman, Z. U., Al-Ghamdi, Y. O., Akhtar, K., Bakhsh, E. M., and Khan, S. B. (2022). Versatility of hydrogels: From synthetic strategies, classification, and properties to biomedical applications. Gels, 8(3), 167.
Akhtar, N., Singh, V., Yusuf, M., and Khan, R. A. (2020). Non-invasive drug delivery technology: Development and current status of transdermal drug delivery devices, techniques and biomedical applications. Biomedical Engineering/Biomedizinische Technik, 65(3), 243–272.
Al Hanbali, O. A., Khan, H. M. S., Sarfraz, M., Arafat, M., Ijaz, S., and Hameed, A. (2019). Transdermal patches: Design and current approaches to painless drug delivery. Acta Pharmaceutica, 69(2), 197–215.
Alex, M., Alsawaftah, N. M., and Husseini, G. A. (2024). State-of-all-the-art and prospective hydrogel-based transdermal drug delivery systems. Applied Sciences, 14(7), 2926.
Arunprasert, K., Pornpitchanarong, C., Piemvuthi, C., Siraprapapornsakul, S., Sripeangchan, S., Lertsrimongkol, O., Opanasopit, P., and Patrojanasophon, P. (2022). Nanostructured lipid carrier-embedded polyacrylic acid transdermal patches for improved transdermal delivery of capsaicin. European Journal of Pharmaceutical Sciences, 173, 106169.
Ashaolu, T. J. (2021). Nanoemulsions for health, food, and cosmetics: A review. Environmental Chemistry Letters, 19(4), 3381–3395.
Ashfaq, R., Rasul, A., Asghar, S., Kovács, A., Berkó, S., and Budai-Szűcs, M. (2023). Lipid nanoparticles: An effective tool to improve the bioavailability of nutraceuticals. International Journal of Molecular Sciences, 24(21), 15764.
Baït, N., Grassl, B., Derail, C., and Benaboura, A. (2011). Hydrogel nanocomposites as pressure-sensitive adhesives for skin-contact applications. Soft Matter, 7(5), 2025–2032.
Baroni, A., Buommino, E., de Gregorio, V., Ruocco, E., Ruocco, V., and Wolf, R. (2012). Structure and function of the epidermis related to barrier properties. Clinics in Dermatology, 30(3), 257–262.
Barradas, T. N., and de Holanda e Silva, K. G. (2020). Nanoemulsions as optimized vehicles for essential oils. In Sustainable Agriculture Reviews 44 (Saneja, A., Panda, A. K., and Lichtfouse, E., Eds.), pp. 115–167. Cham: Springer.
Bird, D., and Ravindra, N. M. (2020). Transdermal drug delivery and patches—An overview. Medical Devices & Sensors, 3(6), e10069.
Borges, A., de Freitas, V., Mateus, N., Fernandes, I., and Oliveira, J. (2020). Solid lipid nanoparticles as carriers of natural phenolic compounds. Antioxidants (Basel), 9(10), 998.
Bozorg, B. D., and Banga, A. K. (2020). Effect of different pressure-sensitive adhesives on performance parameters of matrix-type transdermal delivery systems. Pharmaceutics, 12(3), 209.
Chalykh, A. A., Chalykh, A. E., Novikov, M. B., and Feldstein, M. M. (2002). Pressure-sensitive adhesion in the blends of poly(N-vinyl pyrrolidone) and poly(ethylene glycol) of disparate chain lengths. The Journal of Adhesion, 78(8), 667–694.
Chang, J., Yu, B., Saltzman, W. M., and Girardi, M. (2023). Nanoparticles as a therapeutic delivery system for skin cancer prevention and treatment. JID Innovations, 3(4), 100197.
Creton, C, and Fabre, P. (2002). Chapter 14 - Tack. In Adhesion Science and Engineering (Dillard, D. A., Pocius, A. V., and Chaudhury, M., Eds.), pp. 535–575. Amsterdam: Elsevier.
Da Silva, T. N., Reynaud, F., de Souza Picciani, P. H., de Holanda e Silva, K. G., and Barradas, T. N. (2020). Chitosan-based films containing nanoemulsions of methyl salicylate: Formulation development, physical-chemical and in vitro drug release characterization. International Journal of Biological Macromolecules, 164, 2558–2568.
Dam, P., Celik, M., Ustun, M., Saha, S., Saha, C., Kacar, E. A., Kugu, S., Karagulle, E. N., Tasoglu, S., Buyukserin, F., Mondal, R., Roy, P., Macedo, M. L. R., Franco, O. L., Cardoso, M. H., Altuntas, S., and Mandal, A. K. (2023). Wound healing strategies based on nanoparticles incorporated in hydrogel wound patches. RSC Advances, 13(31), 21345–21364.
DeMuth, P. C., Moon, J. J., Suh, H., Hammond, P. T., and Irvine, D. J. (2012). Releasable layer-by-layer assembly of stabilized lipid nanocapsules on microneedles for enhanced transcutaneous vaccine delivery. ACS Nano Journal, 6(9), 8041–8051.
Di Ventra, M., Evoy, S., and Heflin, J. R., Jr. (Eds.). (2004). Introduction to Nanoscale Science and Technology, New York: Springer.
Dutta, K., Das, B., Mondal, D., Adhikari, A., Rana, D., Chattopadhyay, A. K., Banerjee, R., Mishra, R., and Chattopadhyay, D. (2017). An ex-situ approach to fabricating nanosilica reinforced polyacrylamide grafted guar gum nanocomposites as an efficient biomaterial for transdermal drug delivery application. New Journal of Chemistry, 41(17), 9461–9471.
Farokhzad, O. C., and Langer, R. (2006). Nanomedicine: Developing smarter therapeutic and diagnostic modalities. Advanced Drug Delivery Reviews, 58(14), 1456–1459.
Feldstein, M. M., Dormidontova, E. E., and Khokhlov, A. R. (2015). Pressure sensitive adhesives based on interpolymer complexes. Progress in Polymer Science, 42, 79-153.
Galkina, O. L., Ivanov, V. K., Agafonov, A. V., Seisenbaeva, G. A., and Kessler, V. G. (2015). Cellulose nanofiber–titania nanocomposites as potential drug delivery systems for dermal applications. Journal of Materials Chemistry B, 3(8), 1688–1698.
Gao, W., Zhang, Y., Zhang, Q., and Zhang, L. (2016). Nanoparticle-hydrogel: A hybrid biomaterial system for localized drug delivery. Annals of Biomedical Engineering, 44(6), 2049–2061.
Gaur, P. K., Mishra, S., and Purohit, S. (2013). Solid lipid nanoparticles of guggul lipid as drug carrier for transdermal drug delivery. BioMed Research International, 2013, 750690.
Ghasemiyeh, P., and Mohammadi-Samani, S. (2018). Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Research in Pharmaceutical Sciences, 13(4), 288–303.
Hao, Y., Chen, Y. W., Lei, M. Y., Zhang, T. Y., Cao, Y. P., Peng, J. R., Chen, L. J., and Qian, Z. Y. (2018). Near-Infrared responsive PEGylated gold nanorod and doxorubicin loaded dissolvable hyaluronic acid microneedles for human epidermoid cancer therapy. Advanced Therapeutics, 1(2), 1800008.
Huang, C., Gou, K., Yue, X., Zhao, S., Zeng, R., Qu, Y., and Zhang, C. (2022). A novel hyaluronic acid-based dissolving microneedle patch loaded with ginsenoside Rg3 liposome for effectively alleviate psoriasis. Materials & Design, 224, 111363.
Huang, Y., Lai, H., Jiang, J., Xu, X., Zeng, Z., Ren, L., Liu, Q., Chen, M., Zhang, T., Ding, X., Zhao, C., and Cui, S. (2022). pH-activatable oxidative stress amplifying dissolving microneedles for combined chemo-photodynamic therapy of melanoma. Asian Journal of Pharmaceutical Sciences, 17(5), 679–696.
Jaiswal, M., Dudhe, R., and Sharma, P. K. (2015). Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech, 5(2), 123–127.
Jash, A., Ubeyitogullari, A., and Rizvi, S. S. H. (2021). Liposomes for oral delivery of protein and peptide-based therapeutics: Challenges, formulation strategies, and advances. Journal of Materials Chemistry B, 9(24), 4773–4792.
Jayaprakash, R., Hameed, J., and Anupriya, A. (2017). An overview of transdermal delivery system. Asian Journal of Pharmaceutical and Clinical Research, 10(10), 36–40.
Jayaramudu, T., Raghavendra, G. M., Varaprasad, K., Sadiku, R., Ramam, K., and Raju, K. M. (2013). Iota-carrageenan-based biodegradable Ag0 nanocomposite hydrogels for the inactivation of bacteria. Carbohydrate Polymers, 95(1), 188–194.
Jeong, W. Y., Kwon, M., Choi, H. E., and Kim, K. S. (2021). Recent advances in transdermal drug delivery systems: A review. Biomaterials Research, 25(1), 24.
Jiang, T., Jin, K., Liu, X., and Pang, Z. (2017). 8 - Nanoparticles for tumor targeting. In Biopolymer-Based Composites: Drug Delivery and Biomedical Applications (Jana, S., Maiti, S., and Jana, S., Eds.), pp. 221-267. Cambridge: Woodhead Publishing.
Jose, A., Mandapalli, P. K., and Venuganti, V. V. K. (2016). Liposomal hydrogel formulation for transdermal delivery of pirfenidone. Journal of Liposome Research, 26(2), 139–147.
Jyothi, D., Priya, S., and James, J. P. (2017). Development of nanoparticulate hydrogel loaded with crossandra infundibuliformis extract. Journal of Young Pharmacists, 9(1), 78–82.
Kesarwani, A., Yadav, A. K., Singh, S., Gautam, H., Singh, H. N., Sharma, A., and Yadav, C. (2013). Theoretical aspects of transdermal drug delivery system. Bulletin of Pharmaceutical Research, 3(2), 78–89.
Kim, E. J., and Choi, D. H. (2021). Quality by design approach to the development of transdermal patch systems and regulatory perspective. Journal of Pharmaceutical Investigation, 51(6), 669–690.
Ko, W.-K., Lee, S. J., Kim, S. J., Han, G. H., Han, I.-b., Hong, J. B., Sheen, S. H., and Sohn, S. (2021). Direct injection of hydrogels embedding gold nanoparticles for local therapy after spinal cord injury. Biomacromolecules, 22(7), 2887–2901.
Kumar, R. (2019). Chapter 8 - Lipid-based nanoparticles for drug-delivery systems. In Nanocarriers for Drug Delivery: Nanoscience and Nanotechnology in Drug Delivery (Mohapatra, S. S., Ranjan, S., Dasgupta, N., Mishra, R. K., and Thomas, S., Eds.), pp. 249–284. Amsterdam: Elsevier.
Kurniawan, A., Muneekaew, S., Hung, C.-W., Chou, S.-H., and Wang, M.-J. (2019). Modulated transdermal delivery of nonsteroidal anti-inflammatory drug by macroporous poly(vinyl alcohol)-graphene oxide nanocomposite films. International Journal of Pharmaceutics, 566, 708–716.
Lan, X., Zhu, W., Huang, X., Yu, Y., Xiao, H., Jin, L., Pu, J. J., Xie, X., She, J., Lui, V. W. Y., Chen, H.-J., and Su, Y.-X. (2020). Microneedles loaded with anti-PD-1–cisplatin nanoparticles for synergistic cancer immuno-chemotherapy. Nanoscale, 12(36), 18885–18898.
Lateef, A., and Nazir, R. (2017). Metal nanocomposites: Synthesis, characterization and their applications. In Science and Applications of Tailored Nanostructures (Di Sia, P., Ed.), pp. 239–256. Manchester: One Central Press.
Liu, L., Zhao, W., Ma, Q., Gao, Y., Wang, W., Zhang, X., Dong, Y., Zhang, T., Liang, Y., Han, S., Cao, J., Wang, X., Sun, W., Ma, H., and Sun, Y. (2023). Functional nano-systems for transdermal drug delivery and skin therapy. Nanoscale Advance, 5(6), 1527–1558.
Liu, Y., Liang, Y., Yuhong, J., Xin, P., Han, J. L., Du, Y., Yu, X., Zhu, R., Zhang, M., Chen, W., and Ma, Y. (2024). Advances in nanotechnology for enhancing the solubility and bioavailability of poorly soluble drugs. Drug Design, Development and Therapy, 18, 1469–1495.
Liu, Y., Meng, H., Qian, Z., Fan, N., Choi, W., Zhao, F., and Lee, B. P. (2017). A moldable nanocomposite hydrogel composed of a mussel-inspired polymer and a nanosilicate as a fit-to-shape tissue sealant. Angewandte Chemie International Edition, 56(15), 4224–4228.
Mangesh, B. R., Upadhaya, P., and Ashwini, M. (2016). Solid lipid nanoparticles incorporated transdermal patch for improving the permeation of piroxicam. Asian Journal of Pharmaceutics, 10(1), 45–50.
Martins, C. F., García-Astrain, C., Conde, J., and Liz-Marzán, L. M. (2024). Nanocomposite hydrogel microneedles: A theranostic toolbox for personalized medicine. Drug Delivery and Translational Research, 14(8), 2262–2275.
McCrudden, M. T., Singh, T. R. R., Migalska, K., and Donnelly, R. F. (2013). Strategies for enhanced peptide and protein delivery. Therapeutic Delivery, 4(5), 593–614.
Merino, S., Martín, C., Kostarelos, K., Prato, M., and Vázquez, E. (2015). Nanocomposite hydrogels: 3D polymer–nanoparticle synergies for on-demand drug delivery. ACS Nano, 9(5), 4686–4697.
Mishra, D. K., Pandey, V., Maheshwari, R., Ghode, P., and Tekade, R. K. (2019). Chapter 15 - Cutaneous and transdermal drug delivery. In Basic Fundamentals of Drug Delivery (Tekade, R. K., Ed.), pp. 595–650. London: Academic press.
Mitchell, M. J., Billingsley, M. M., Haley, R. M., Wechsler, M. E., Peppas, N. A., and Langer, R. (2021). Engineering precision nanoparticles for drug delivery. Nature Reviews Drug Discovery, 20(2), 101–124.
Kashkooli, F. M., Soltani, M., and Souri, M. (2020). Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static and dynamic targeting strategies. Journal of Controlled Release, 327, 316–349.
Nam, J.-M., Liz-Marzán, L., and Halas, N. (2019). Chemical nanoplasmonics: Emerging interdisciplinary research field at crossroads between nanoscale chemistry and plasmonics. Accounts of Chemical Research, 52(11), 2995–2996.
Nandi, S., and Mondal, S. (2022). Fabrication and evaluation of matrix type novel transdermal patch loaded with tramadol hydrochloride. Turkish Journal of Pharmaceutical Sciences, 19(5), 572–582.
Nayak, D., Mohanta, Y. K., Rauta, P. R., Chakrabartty, I., and Saravanan, M. (2022). Ethosomes for dermal and transdermal drug delivery systems. In Pharmaceutical Nanobiotechnology for Targeted Therapy (Barabadi, H., Mostafavi, E., and Saravanan, M., Eds.), pp. 313–336. Cham: Springer.
Nazir, S., Khan, M. U. A., Al-Arjan, W. S., Razak, S. I. A., Javed, A., and Abdul Kadir, M. R. (2021). Nanocomposite hydrogels for melanoma skin cancer care and treatment: In-vitro drug delivery, drug release kinetics and anti-cancer activities. Arabian Journal of Chemistry, 14(5), 103120.
Nunes, D., Andrade, S., Ramalho, M. J., Loureiro, J. A., and Pereira, M. C. (2022). Polymeric nanoparticles-loaded hydrogels for biomedical applications: A systematic review on in vivo findings. Polymers, 14(5), 1010.
Ojo, O., Andrew, F. P., Idris, A. H., and Yelwa, J. M. (2024). Morphological and mechanical properties of chitosan/cellulose nanofibrils/aspirin polymer nanocomposite films. Earthline Journal of Chemical Sciences, 11(2), 189–197.
Opatha, S. A. T., Titapiwatanakun, V., and Chutoprapat, R. (2020). Transfersomes: A promising nanoencapsulation technique for transdermal drug delivery. Pharmaceutics, 12(9), 855.
Pangli, H., Vatanpour, S., Hortamani, S., Jalili, R., and Ghahary, A. (2021). Incorporation of silver nanoparticles in hydrogel matrices for controlling wound infection. Journal of Burn Care & Research, 42(4), 785-793.
Parhi, R. (2018). Nanocomposite for transdermal drug delivery. In Applications of Nanocomposite Materials in Drug Delivery (Inamuddin, Asiri, A. M., and Mohammad, A., Eds.), pp. 353–389. Cambridge: Woodhead Publishing.
Pastore, M. N., Kalia, Y. N., Horstmann, M., and Roberts, M. S. (2015). Transdermal patches: History, development and pharmacology. British Journal of Pharmacology, 172(9), 2179–2209.
Pérez-Martínez, C. J., Morales Chávez, S. D., del Castillo-Castro, T., Lara Ceniceros, T. E., Castillo-Ortega, M. M., Rodríguez-Félix, D. E., and Gálvez Ruiz, J. C. (2016). Electroconductive nanocomposite hydrogel for pulsatile drug release. Reactive and Functional Polymers, 100, 12–17.
Petrovic, S., Bita, B., and Barbinta-Patrascu, M.-E. (2024). Nanoformulations in pharmaceutical and biomedical applications: Green perspectives. International Journal of Molecular Sciences, 25(11), 5842.
Picart, C. (2008). Polyelectrolyte multilayer films: From physico-chemical properties to the control of cellular processes. Current Medicinal Chemistry, 15(7), 685–697.
Qindeel, M., Khan, D., Ahmed, N., Khan, S., and Rehman, A. U. (2020). Surfactant-free, self-assembled nanomicelles-based transdermal hydrogel for safe and targeted delivery of methotrexate against rheumatoid arthritis. ACS Nano, 14(4), 4662–4681.
Rahim, M. A., Jan, N., Khan, S., Shah, H., Madni, A., Khan, A., Jabar, A., Khan, S., Elhissi, A., Hussain, Z., Aziz, H. C., Sohail, M., Khan, M., and Thu, H. E. (2021). Recent advancements in stimuli responsive drug delivery platforms for active and passive cancer targeting. Cancers (Basel), 13(4), 670.
Rajabi, N., Kharaziha, M., Emadi, R., Zarrabi, A., Mokhtari, H., and Salehi, S. (2020). An adhesive and injectable nanocomposite hydrogel of thiolated gelatin/gelatin methacrylate/Laponite® as a potential surgical sealant. Journal of Colloid and Interface Science, 564, 155–169.
Ramezani, M., and Ripin, Z. M. (2023). An overview of enhancing the performance of medical implants with nanocomposites. Journal of Composites Science, 7(5), 199.
Rhim, J.-W. (2011). Effect of clay contents on mechanical and water vapor barrier properties of agar-based nanocomposite films. Carbohydrate Polymers, 86(2), 691–699.
Samari, M., Kashanian, S., Zinadini, S., and Derakhshankhah, H. (2024). Designing of a new transdermal antibiotic delivery polymeric membrane modified by functionalized SBA-15 mesoporous filler. Scientific Reports, 14(1), 10418.
Sanità, G., Carrese, B., and Lamberti, A. (2020). Nanoparticle surface functionalization: How to improve biocompatibility and cellular internalization. Frontiers in Molecular Biosciences, 7, 587012.
Schoellhammer, C. M., Blankschtein, D., and Langer, R. (2014). Skin permeabilization for transdermal drug delivery: Recent advances and future prospects. Expert Opinion on Drug Delivery, 11(3), 393–407.
Scioli Montoto, S., Muraca, G., and Ruiz, M. E. (2020). Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects. Frontiers in Molecular Biosciences, 7, 587997.
Sharma, P., and Otto, M. (2024). Multifunctional nanocomposites modulating the tumor microenvironment for enhanced cancer immunotherapy. Bioactive Materials, 31, 440–462.
Sikandar, M., Shoaib, M. H., Yousuf, R. I., Ahmed, F. R., Ali, F. R., Saleem, M. T., Ahmed, K., Sarfaraz, S., Jabeen, S., Siddiqui, F., Husain, T., Qazi, F., and Imtiaz, M. S. (2022). Nanoclay-based composite films for transdermal drug delivery: Development, characterization, and in silico modeling and simulation. International Journal of Nanomedicine, 17, 3463–3481.
Singpanna, K., Dechsri, K., Patrojanasophon, P., Limpachayaporn, P., Opanasopit, P., and Nuntharatanapong, N. (2021). Transdermal delivery, cytotoxicity and anti-melanogenic activity of p-chlorophenyl benzyl ether loaded-liposomes. Journal of Drug Delivery Science and Technology, 65, 102746.
Song, F., Li, X., Wang, Q., Liao, L., and Zhang, C. (2015). Nanocomposite hydrogels and their applications in drug delivery and tissue engineering. Journal of Biomedical Nanotechnology, 11(1), 40–52.
St Clair-Jones, A., Prignano, F., Goncalves, J., Paul, M., and Sewerin, P. (2020). Understanding and minimising injection-site pain following subcutaneous administration of biologics: A narrative review. Rheumatology and Therapy, 7(4), 741–757.
Supe, S., and Takudage, P. (2021). Methods for evaluating penetration of drug into the skin: A review. Skin Research and Technology, 27(3), 299–308.
Swaney, M. H., and Kalan, L. R. (2021). Living in your skin: Microbes, molecules, and mechanisms. Infection and Immunity, 89(4), e00695-20.
Szymańska, E., Orłowski, P., Winnicka, K., Tomaszewska, E., Bąska, P., Celichowski, G., Grobelny, J., Basa, A., and Krzyżowska, M. (2018). Multifunctional tannic acid/ silver nanoparticle-based mucoadhesive hydrogel for improved local treatment of HSV infection: In vitro and in vivo studies. International Journal of Molecular Sciences, 19(2), 387.
Tan, H. S., and Pfister, W. R. (1999). Pressure-sensitive adhesives for transdermal drug delivery systems. Pharmaceutical Science & Technology Today, 2(2), 60–69.
Thang, N. H., Chien, T. B., and Cuong, D. X. (2023). Polymer-based hydrogels applied in drug delivery: An overview. Gels, 9(7), 523.
Uchechi, O., Ogbonna, J. D. N., and Attama, A. A. (2014). Nanoparticles for dermal and transdermal drug delivery. In Application of Nanotechnology in Drug Delivery (Sezer, A. D., Ed.), pp. 193–235. Rijeka: IntechOpen.
Vaseem, R. S., D'Cruz, A., Shetty, S., Hafsa, Vardhan, A., R, S. S., Marques, S. M., Kumar L, and Verma, R. (2024). Transdermal drug delivery systems: A focused review of the physical methods of permeation enhancement. Advanced Pharmaceutical Bulletin, 14(1), 67–85.
Vashist, A., and Ahmad, S. (2013). Hydrogels: Smart materials for drug delivery. Oriental Journal of Chemistry, 29(3), 861–870.
Vieira, I. R. S., Costa, L. de F. de O., Miranda, G. dos S., da Silva, A. A., Nardecchia, S., Monteiro, M. S. de S. de B., de Freitas, Z. M. F., Delpech, M. C., and Ricci-Júnior, E. (2020). Transdermal progesterone delivery study from waterborne poly(urethane-urea)s nanocomposites films based on montmorillonite clay and reduced graphene oxide. Journal of Drug Delivery Science and Technology, 60, 101873.
Wang, H., Zhao, Z., Wu, C., Tong, X., Shi, Y., and Chen, S. (2022). Microneedle patch delivery of methotrexate-loaded albumin nanoparticles to immune cells achieves a potent antipsoriatic effect. International Journal of Nanomedicine, 17, 3841–3851.
Wang, J., Hu, H., Yang, Z., Wei, J., and Li, J. (2016). IPN hydrogel nanocomposites based on agarose and ZnO with antifouling and bactericidal properties. Materials Science and Engineering: C, 61, 376–386.
Wang, M., Marepally, S. K., Vemula, P. K., and Xu, C. (2016). Inorganic nanoparticles for transdermal drug delivery and topical application. In Nanoscience in Dermatology (Hamblin, M. R., Avci, P., and Prow, T. W., Eds.), pp. 57–72. London: Academic press.
Wang, Y., Angelatos, A. S., and Caruso, F. (2008). Template synthesis of nanostructured materials via layer-by-layer assembly. Chemistry of Materials, 20(3), 848–858.
Wei, S., Liu, X., Zhou, J., Zhang, J., Dong, A., Huang, P., Wang, W., and Deng, L. (2020). Dual-crosslinked nanocomposite hydrogels based on quaternized chitosan and clindamycin-loaded hyperbranched nanoparticles for potential antibacterial applications. International Journal of Biological Macromolecules, 155, 153–162.
Wong, W. F., Ang, K. P., Sethi, G., and Looi, C. Y. (2023). Recent advancement of medical patch for transdermal drug delivery. Medicina (Kaunas), 59(4), 778.
Woo, W.-M. (2019). Skin structure and biology. In Imaging Technologies and Transdermal Delivery in Skin Disorders (Xu, C., Wang, X., and Pramanik, M., Eds.), pp. 1–14. New Jersey: Wiley-VCH.
Wu, C., Liu, J., Zhai, Z., Yang, L., Tang, X., Zhao, L., Xu, K., and Zhong, W. (2020). Double-crosslinked nanocomposite hydrogels for temporal control of drug dosing in combination therapy. Acta Biomaterialia, 106, 278–288.
Xuan, L., Ju, Z., Skonieczna, M., Zhou, P.-K., and Huang, R. (2023). Nanoparticles-induced potential toxicity on human health: Applications, toxicity mechanisms, and evaluation models. MedComm, 4(4), e327.
Yin, I. X., Zhang, J., Zhao, I. S., Mei, M. L., Li, Q., and Chu, C. H. (2020). The antibacterial mechanism of silver nanoparticles and its application in dentistry. International Journal of Nanomedicine, 15, 2555–2562.
Yun, Y., Wu, H., Gao, J., Dai, W., Deng, L., Lv, O., and Kong, Y. (2020). Facile synthesis of Ca2+-crosslinked sodium alginate/graphene oxide hybrids as electro- and pH-responsive drug carrier. Materials Science and Engineering: C, 108, 110380.
Zhang, Z., Li, W., Chang, D., Wei, Z., Wang, E., Yu, J., Xu, Y., Que, Y., Chen, Y., Fan, C., Ma, B., Zhou, Y., Huan, Z., Yang, C., Guo, F., and Chang, J. (2023). A combination therapy for androgenic alopecia based on quercetin and zinc/copper dual-doped mesoporous silica nanocomposite microneedle patch. Bioactive Materials, 24, 81–95.
Zhang, Z., Tsai, P.-C., Ramezanli, T., and Michniak-Kohn, B. B. (2013). Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 5(3), 205–218.
Zhao, F., Yao, D., Guo, R., Deng, L., Dong, A., and Zhang, J. (2015). Composites of polymer hydrogels and nanoparticulate systems for biomedical and pharmaceutical applications. Nanomaterials, 5(4), 2054–2130.
Zhao, N., and Yuan, W. (2023). Self-healing and shape-adaptive nanocomposite hydrogels with anti-inflammatory, antioxidant, antibacterial activities and hemostasis for real-time visual regeneration of diabetic wounds. Composites Part B: Engineering, 262, 110819.
Zhou, X., Hao, Y., Yuan, L., Pradhan, S., Shrestha, K., Pradhan, O., Liu, H., and Li, W. (2018). Nano-formulations for transdermal drug delivery: A review. Chinese Chemical Letters, 29(12), 1713–1724.