Pathogen patterns and clinical outcomes of empirical antibiotic treatment in cholangitis: Single-center retrospective study

Main Article Content

Potjamarn Treethammakul
Apinya Boonpeng
Natapohn Chaipichit

Abstract

This retrospective cohort study determines patterns of pathogens and empirical antibiotic treatment among patients with cholangitis. We examined the clinical response and in-hospital all-cause mortality between empirical antibiotic treatment among patients with acute cholangitis at a general hospital in northeast Thailand. The Nelson-Aalen estimator and the Kaplan-Meier survival curve were respectively used to calculate the hazard ratio (HR) and 95% confidence interval (95% CI).  The prevalence of pathogens and patterns of empirical antibiotics used were also studied. Among 232 patients, 90 patients (38.8%) had positive blood/bile cultures with 107 pathogenic organisms. The most prevalent non-resistant bacteria were Escherichia coli (35.5%) and Klebsiella pneumoniae (11.2%), to which all were susceptible to ceftriaxone and meropenem. About 16.8% of E. coli isolates exhibited ceftriaxone resistance, but all were sensitive to carbapenems. No difference was noted in clinical response and mortality rates between carbapenem-based and cephalosporin-based regimens (adjusted HR (aHR), 0.88; 95% CI, 0.66–1.19; p = 0.42 and 0.36; 95% CI 0.10–1.28; p = 0.12, respectively). In empirical antibiotic treatment of acute cholangitis, a carbapenem-based regimen demonstrated the same clinical response and mortality rate as a cephalosporin-based regimen; however, carbapenems should only be used among patients at high risk of resistant infections.

Downloads

Download data is not yet available.

Article Details

How to Cite
Treethammakul, P., Boonpeng, A., & Chaipichit, N. (2025). Pathogen patterns and clinical outcomes of empirical antibiotic treatment in cholangitis: Single-center retrospective study. Science, Engineering and Health Studies, 19, 25050010. https://doi.org/10.69598/sehs.19.25050010
Section
Health sciences

References

Boey, J. H., & Way, L. W. (1980). Acute cholangitis. Annals of Surgery, 191(3), 264–270. https://doi.org/10.1097/00000658-198003000-00002

Bone, R. C., Balk, R. A., Cerra, F. B., Dellinger, R. P., Fein, A. M., Knaus, W. A., Schein, R. M. H., & Sibbald, W. J. (1992). Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest, 101(6), 1644–1655. https://doi.org/10.1378/chest.101.6.1644

Chang, K.-K., Chang, C.-L., Tai, F.-T., Wang, C.-H., & Lin, R.-C. (2014). Empiric antibiotic choices for community-acquired biliary tract infections. Advances in Digestive Medicine, 1(2), 54–59. https://doi.org/10.1016/j.aidm.2013.09.002

Du, M., Suo, J., Liu, B., Xing, Y., Chen, L., & Liu, Y. (2017). Post-ERCP infection and its epidemiological and clinical characteristics in a large Chinese tertiary hospital: A 4-year surveillance study. Antimicrobial Resistance & Infection Control, 6, Article 131. https://doi.org/10.1186/s13756-017-0290-0

Eaupanitcharoen, S., & Saratuy, S. (2020). Outcomes of acute cholangitis in Maharat Nakhon Ratchasima hospital: A retrospective review. The Thai Journal of Surgery, 41(1), 16–22. https://he02.tci-thaijo.org/index.php/ThaiJSurg/article/view/239909

Evans, L., Rhodes, A., Alhazzani, W., Antonelli, M., Coopersmith, C. M., French, C., Machado, F. R., Mcintyre, L., Ostermann, M., Prescott, H. C., Schorr, C., Simpson, S., Wiersinga, W. J., Alshamsi, F., Angus, D. C., Arabi, Y., Azevedo, L., Beale, R., Beilman, G., . . . Levy, M. (2021). Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Critical Care Medicine, 49(11), e1063–e1143. https://doi.org/10.1097/CCM.0000000000005337

Gomi, H., Solomkin, J. S., Schlossberg, D., Okamoto, K., Takada, T., Strasberg, S. M., Ukai, T., Endo, I., Iwashita, Y., Hibi, T., Pitt, H. A., Matsunaga, N., Takamori, Y., Umezawa, A., Asai, K., Suzuki, K., Han, H.-S., Hwang, T.-L., Mori, Y., . . . Yamamoto, M. (2018). Tokyo guidelines 2018: Antimicrobial therapy for acute cholangitis and cholecystitis. Journal of Hepato-Biliary-Pancreatic Sciences, 25(1), 3–16. https://doi.org/10.1002/jhbp.518

Gomi, H., Takada, T., Hwang, T.-L., Akazawa, K., Mori, R., Endo, I., Miura, F., Kiriyama, S., Matsunaga, N., Itoi, T., Yokoe, M., Chen, M.-F., Jan, Y.-Y., Ker, C.-G., Wang, H.-P., Wada, K., Yamaue, H., Miyazaki, M., & Yamamoto, M. (2017). Updated comprehensive epidemiology, microbiology, and outcomes among patients with acute cholangitis. Journal of Hepato-Biliary-Pancreatic Sciences, 24(6), 310–318. https://doi.org/10.1002/jhbp.452

Jeong, H. T., Song, J. E., Kim, H. G., & Han, J. (2022). Changing patterns of causative pathogens over time and efficacy of empirical antibiotic therapies in acute cholangitis with bacteremia. Gut Liver, 16(6), 985–994. https://doi.org/10.5009/gnl210474

Kiriyama, S., Kozaka, K., Takada, T., Strasberg, S. M., Pitt, H. A., Gabata, T., Hata, J., Liau, K.-H., Miura, F., Horiguchi, A., Liu, K.-H., Su, C.-H., Wada, K., Jagannath, P., Itoi, T., Gouma, D. J., Mori, Y., Mukai, S., Giménez, M. E., . . . Yamamoto, M. (2018). Tokyo guidelines 2018: Diagnostic criteria and severity grading of acute cholangitis (with videos). Journal of Hepato-Biliary-Pancreatic Sciences, 25(1), 17–30. https://doi.org/10.1002/jhbp.512

Masuda, S., Koizumi, K., Makazu, M., Uojima, H., Kubota, J., Kimura, K., Nishino, T., Sumida, C., Ichita, C., Sasaki, A., & Shionoya, K. (2022). Antibiotic administration within two days after successful endoscopic retrograde cholangiopancreatography is sufficient for mild and moderate acute cholangitis. Journal of Clinical Medicine, 11(10), Article 2697. https://doi.org/10.3390/jcm11102697

McGregor, J. C., Rich, S. E., Harris, A. D., Perencevich, E. N., Osih, R., Lodise, T. P., Jr., Miller, R. R., & Furuno, J. P. (2007). A systematic review of the methods used to assess the association between appropriate antibiotic therapy and mortality in bacteremic patients. Clinical Infectious Diseases, 45(3), 329–337. https://doi.org/10.1086/519283

Morrissey, I., Hackel, M., Badal, R., Bouchillon, S., Hawser, S., & Biedenbach, D. (2013). A review of ten years of the study for monitoring antimicrobial resistance trends (SMART) from 2002 to 2011. Pharmaceuticals, 6(11), 1335–1346. https://doi.org/10.3390/ph6111335

National Antimicrobial Resistant Surveillance Center. (2019). Percentage of susceptible organisms isolated from blood, 92 hospitals, Jan – Dec 2019. https://narst.dmsc.moph.go.th/antibiograms/2019/12/Jan-Dec2019-Blood.pdf

Reiter, F. P., Obermeier, W., Jung, J., Denk, G., Mahajan, U. M., De Toni, E. N., Schirra, J., Mayerle, J., & Schulz, C. (2021). Prevalence, resistance rates, and risk factors of pathogens in routine bile cultures obtained during endoscopic retrograde cholangiography. Digestive Diseases, 39(1), 42–51. https://doi.org/10.1159/000509289

Reuken, P. A., Torres, D., Baier, M., Löffler, B., Lübbert, C., Lippmann, N., Stallmach, A., & Bruns, T. (2017). Risk factors for multi-drug resistant pathogens and failure of empiric first-line therapy in acute cholangitis. PLoS ONE, 12(2), Article e0172373. https://doi.org/10.1371/journal.pone.0169900

Saqeb, K. M. N. (2020). Microbiological profile and antibiotic susceptibility pattern in blood stream infections in patients with acute cholangitis: A prospective observational study. Bangladesh Critical Care Journal, 8(2), 68–75. https://doi.org/10.3329/bccj.v8i2.50022

van den Hazel, S. J., Speelman, P., Tytgat, G. N. J., Dankert, J., & van Leeuwen, D. J. (1994). Role of antibiotics in the treatment and prevention of acute and recurrent cholangitis. Clinical Infectious Diseases, 19(2), 279–286. https://doi.org/10.1093/clinids/19.2.279

Wang, H., & Chow, S.-C. (2007). Sample size calculation for comparing proportions. In R. B. D’Agostino, L. Sullivan, & J. Massaro (Eds.), Wiley Encyclopedia of Clinical Trials. Wiley & Sons. https://doi.org/10.1002/9780471462422.eoct005