Green technology extraction of Dictyophora indusiata at the egg stage: Unveiling the antioxidant potential and bioactive components for cosmetic applications

Main Article Content

Jatuporn Prathumtet
Tantima Kumlung
Warisada Sila-On
Utsana Puapermpoonsiri

Abstract

Mushrooms have been introduced as potential sources of natural antioxidants. Different bioactive components and antioxidant activity have been reported for different extraction methods. Therefore, this study aimed to examine the bioactive components and antioxidant activity of Dictyophora indusiata in eggs extracted with water using microwave-assisted extraction (MAE), ultrasonic-assisted extraction (UAE), and hot water extraction (HWE). The results indicated that the extract yields ranged from 12.33 ± 0.42% to 15.60 ± 1.44%. UAE exhibited the strongest antioxidant activity in the 2,2’-azinobis (3-ethylbenzthiazoline-6-acid) assay (IC50 of 5.68 ± 0.09 mg/mL), whereas HWE demonstrated the best antioxidant activity in both the 2,2-diphenyl-1-picrylhydrazyl assay and the ferric reducing antioxidant power assay. Furthermore, the MAE yielded the highest total polysaccharide content (746.75 ± 3.04 mg glucose/g extract). The highest total phenolic content (9.73 ± 0.28 mg gallic acid/g extract) was observed in UAE. The total flavonoid content, a subtype of phenolic compounds, was enriched in HWE and UAE (3.96 ± 0.03 and 3.96 ± 0.12 mg quercetin/g extract, respectively). In summary, UAE was shown to be a promising method for extracting bioactive components with antioxidant activity, offering advantages in reducing extraction time and temperature, which is appropriate for cosmeceutical applications.

Downloads

Download data is not yet available.

Article Details

How to Cite
Prathumtet, J., Kumlung, T., Sila-On, W., & Puapermpoonsiri, U. (2025). Green technology extraction of Dictyophora indusiata at the egg stage: Unveiling the antioxidant potential and bioactive components for cosmetic applications. Science, Engineering and Health Studies, 19, 25050013. https://doi.org/10.69598/sehs.19.25050013
Section
Health sciences

References

Antony, A., & Farid, M. (2022). Effect of temperatures on polyphenols during extraction. Applied Sciences, 12(4), Article 2107. https://doi.org/10.3390/app12042107

Braga, M. E. M., Moreschi, S. R. M., & Meireles, M. A. A. (2006). Effects of supercritical fluid extraction on Curcuma longa L. and Zingiber officinale R. starches. Carbohydrate Polymers, 63(3), 340–346. https://doi.org/10.1016/j.carbpol.2005.08.055

Cai, W., Gu, X., & Tang, J. (2008). Extraction, purification, and characterization of the polysaccharides from Opuntia milpa alta. Carbohydrate Polymers, 71(3), 403–410. https://doi.org/10.1016/j.carbpol.2007.06.008

Cheng, Z., Song, H., Yang, Y., Liu, Y., Liu, Z., Hu, H., & Zhang, Y. (2015). Optimization of microwave-assisted enzymatic extraction of polysaccharides from the fruit of Schisandra chinensis Baill. International Journal of Biological Macromolecules, 76, 161–168. https://doi.org/10.1016/j.ijbiomac.2015.01.048

Costa, E. F., Magalhães, W. V., & Di Stasi, L. C. (2022). Recent advances in herbal-derived products with skin anti-aging properties and cosmetic applications. Molecules, 27(21), Article 7518. https://doi.org/10.3390/molecules27217518

de Lima Cherubim, D. J., Buzanello Martins, C. V., Oliveira Fariña, L., & da Silva de Lucca, R. A. (2020). Polyphenols as natural antioxidants in cosmetics applications. Journal of Cosmetic Dermatology, 19(1), 33–37. https://doi.org/10.1111/jocd.13093

Deng, C., Fu, H., Teng, L., Hu, Z., Xu, X., Chen, J., & Ren, T. (2013). Anti-tumor activity of the regenerated triple-helical polysaccharide from Dictyophora indusiata. International Journal of Biological Macromolecules, 61, 453–458. https://doi.org/10.1016/j.ijbiomac.2013.08.007

Dias, M. C., Pinto, D. C. G. A., & Silva, A. M. S. (2021). Plant flavonoids: Chemical characteristics and biological activity. Molecules, 26(17), Article 5377. https://doi.org/10.3390/molecules26175377

Dobros, N., Zawada, K., & Paradowska, K. (2022). Phytochemical profile and antioxidant activity of Lavandula angustifolia and Lavandula x intermedia cultivars extracted with different methods. Antioxidants, 11(4), Article 711. https://doi.org/10.3390/antiox11040711

Fu, H., Deng, C., Teng, L., Yu, L., Su, T., Xu, X., Chen, J., & Yang, C. (2015). Immunomodulatory activities on RAW 264.7 macrophages of a polysaccharide from veiled lady mushroom, Dictyophora indusiata (Higher Basidiomycetes). International Journal of Medicinal Mushrooms, 17(2), 151–160. https://doi.org/10.1615/intjmedmushrooms.v17.i2.60

Habtemariam, S. (2019). The chemistry, pharmacology and therapeutic potential of the edible mushroom Dictyophora indusiata (Vent ex. Pers.) Fischer (Synn. Phallus indusiatus). Biomedicines, 7(4), Article 98. https://doi.org/10.3390/biomedicines7040098

Hassanpour, S. H., & Doroudi, A. (2023). Review of the antioxidant potential of flavonoids as a subgroup of polyphenols and partial substitute for synthetic antioxidants. Avicenna Journal of Phytomedicine, 13(4), 354–376. https://doi.org/10.22038/AJP.2023.21774

He, J. L., Guo, H., Wei, S. Y., Zhou, J., Xiang, P. Y., Liu, L., Zhao, L., Qin, W., Gan, R. Y., & Wu, D. T. (2020). Effects of different extraction methods on the structural properties and bioactivities of polysaccharides extracted from Qingke (Tibetan hulless barley). Journal of Cereal Science, 92, Article 102906. https://doi.org/10.1016/j.jcs.2020.102906

Hua, Y., Yang, B., Tang, J., Ma, Z., Gao, Q., & Zhao, M. (2012). Structural analysis of water-soluble polysaccharides in the fruiting body of Dictyophora indusiata and their in vivo antioxidant activities. Carbohydrate Polymers, 87(1), 343–347. https://doi.org/10.1016/j.carbpol.2011.07.056

Ibrahim, H. K. (2014). Effect of β-Glucan extracted from saccharomyces cerevisiae on angiogenesis [Master’s thesis, Al-Nahrain University]. Nahrainuniv. https://www.nahrainuniv.edu.iq/en/node/5289

Irawan, C., Utami, A., Styani, E., Putri, I. D., Putri, R. K., Dewanta, A., & Ramadhanti, A. (2021). Potential of ethanolic extract from ripe Musa balbisiana colla fruit using ultrasound-assisted extraction as an antioxidant and anti-gout. Pharmacognosy Journal, 13(6), 1332–1340. https://doi.org/10.5530/pj.2021.13.168

Ismail, Z., Wan Ahmad, W. I., Hamjah, S. H., & Astina, I. K. (2021). The impact of population ageing: A review. Iranian Journal of Public Health, 50(12), 2451–2460. https://doi.org/10.18502/ijph.v50i12.7927

Kang, Q., Chen, S., Li, S., Wang, B., Liu, X., Hao, L., & Lu, J. (2019). Comparison on characterization and antioxidant activity of polysaccharides from Ganoderma lucidum by ultrasound and conventional extraction. International Journal of Biological Macromolecules, 124, 1137–1144. https://doi.org/10.1016/j.ijbiomac.2018.11.215

Kim, D. S., Jeon, B. K., Mun, Y. J., Kim, Y. M., Lee, Y. E., & Woo, W. H. (2011). Effect of Dioscorea Aimadoimo on anti-aging and skin moisture capacity. Journal of Physiology & Pathology in Korean Medicine, 25(3), 425–430. [in Korean]

Laczkó-Zöld, E., Komlósi, A., Ülkei, T., Fogarasi, E., Croitoru, M., Fülöp, I., Domokos, E., Ştefănescu, R., & Varga, E. (2018). Extractability of polyphenols from black currant, red currant and gooseberry and their antioxidant activity. Acta Biologica Hungarica, 69(2), 156–169. https://doi.org/10.1556/018.69.2018.2.5

Lee, J. J., & Yoon, K. Y. (2021). Optimization of ultrasound-assisted extraction of phenolic compounds from bitter melon (Momordica charantia) using response surface methodology. CyTA - Journal of Food, 19(1), 721–728. https://doi.org/10.1080/19476337.2021.1973110

Lee, Y. J., Kim, D. B., Lee, J. S., Cho, J. H., Kim, B. K., Choi, H. S., Lee, B. Y., & Lee, O. H. (2013). Antioxidant activity and anti-adipogenic effects of wild herbs mainly cultivated in Korea. Molecules, 18(10), 12937–12950. https://doi.org/10.3390/molecules181012937

Liu, X., Chen, Y., Wu, L., Wu, X., Huang, Y., & Liu, B. (2017). Optimization of polysaccharides extraction from Dictyophora indusiata and determination of its antioxidant activity. International Journal of Biological Macromolecules, 103, 175–181. https://doi.org/10.1016/j.ijbiomac.2017.04.125

Liu, Z., Ren, Z., Zhang, J., Chuang, C.-C., Kandaswamy, E., Zhou, T., & Zuo, L. (2018). Role of ROS and nutritional antioxidants in human diseases. Frontiers in Physiology, 9, Article 477. https://doi.org/10.3389/fphys.2018.00477

Mamah, B., Nisan, N., Duanyai, S., & Manok, S. (2017). Development of cosmetic product from leaves of Moringa oleifera Lam. collected in Sripoom community in Thonburi area. Isan Journal of Pharmaceutical Sciences, 13(2), 80–89. https://doi.org/10.14456/IJPS.2017.14 [in Thai]

Nazir, Y., Linsaenkart, P., Khantham, C., Chaitep, T., Jantrawut, P., Chittasupho, C., Rachtanapun, P., Jantanasakulwong, K., Phimolsiripol, Y., Sommano, S. R., Tocharus, J., Mingmalairak, S., Wongsa, A., Arjin, C., Sringarm, K., Berrada, H., Barba, F. J., & Ruksiriwanich, W. (2021). High efficiency in vitro wound healing of Dictyophora indusiata extracts via anti-inflammatory and collagen stimulating (MMP-2 inhibition) mechanisms. Journal of Fungi, 7(12), Article 1100. https://doi.org/10.3390/jof7121100

Nguyen, T. K., Shin, D. B., Lee, K. R., Shin, P. G., Cheong, J. C., Yoo, Y. B., Lee, M. W., Jin, G.-H., Kim, H. Y., Im, K. H., & Lee, T. S. (2013). Antioxidant and anti-inflammatory activities of fruiting bodies of Dyctiophora indusiata. Journal of Mushroom Science and Production, 11(4), 269–277. https://doi.org/10.14480/JM.2013.11.4.269

Ong, H.-B. (2022). Aging population and gross savings of ASEAN-5. Cogent Social Sciences, 8(1), Article 2096530. https://doi.org/10.1080/23311886.2022.2096530

Oyetayo, V. O., Dong, C. H., & Yao, Y. J. (2009). Antioxidant and antimicrobial properties of aqueous extract from Dictyophora indusiata. The Open Mycology Journal, 3(1), 20–26. https://doi.org/10.2174/1874437000903010020

Pan, L., Wang, L., Zhang, F., Zhang, Y., & Zheng, B. (2023). Structural characterization and bifidogenic activity of polysaccharide from Dictyophora indusiata. Food Bioscience, 51, Article 102297. https://doi.org/10.1016/j.fbio.2022.102297

Pisoschi, A. M., Pop, A., Cimpeanu, C., & Predoi, G. (2016). Antioxidant capacity determination in plants and plant-derived products: A review. Oxidative Medicine and Cellular Longevity, 2016(1), Article 9130976. https://doi.org/10.1155/2016/9130976

Poomanee, W., Yaowiwat, N., Pattarachaidaecharuch, T., & Leelapornpisid, P. (2023). Optimized multiherbal combination and in vivo anti-skin aging potential: A randomized double blind placebo controlled study. Scientific Reports, 13(1), Article 5633. https://doi.org/10.1038/s41598-023-32738-7

Ru, Q. M., Wang, L. J., Li, W. M., Wang, J. L., & Ding, Y. T. (2012). In vitro antioxidant properties of flavonoids and polysaccharides extract from tobacco (Nicotiana tabacum L.) leaves. Molecules, 17(9), 11281–11291. https://doi.org/10.3390/molecules170911281

Ruksiriwanich, W., Khantham, C., Linsaenkart, P., Chaitep, T., Rachtanapun, P., Jantanasakulwong, K., Phimolsiripol, Y., Režek Jambrak, A., Nazir, Y., Yooin, W., Sommano, S. R., Jantrawut, P., Sainakham, M., Tocharus, J., Mingmalairak, S., & Sringarm, K. (2022). Anti‐inflammation of bioactive compounds from ethanolic extracts of edible bamboo mushroom (Dictyophora indusiata) as functional health promoting food ingredients. International Journal of Food Science and Technology, 57(1), 110–122. https://doi.org/10.1111/ijfs.15338

Sharma, K., Ko, E. Y., Assefa, A. D., Ha, S., Nile, S. H., Lee, E. T., & Park, S. W. (2015). Temperature-dependent studies on the total phenolics, flavonoids, antioxidant activities, and sugar content in six onion varieties. Journal of Food and Drug Analysis, 23(2), 243–252. https://doi.org/10.1016/j.jfda.2014.10.005

Sharma, V. K., Choi, J., Sharma, N., Choi, M., & Seo, S.-Y. (2004). In vitro anti-tyrosinase activity of 5-(hydroxymethyl)-2-furfural isolated from Dictyophora indusiata. Phytotherapy Research, 18(10), 841–844. https://doi.org/10.1002/ptr.1428

Shon, M. S., Lee, Y., Song, J. H., Park, T., Lee, J. K., Kim, M., Park, E., & Kim, G. N. (2014). Anti-aging potential of extracts prepared from fruits and medicinal herbs cultivated in the Gyeongnam area of Korea. Preventive Nutrition and Food Science, 19(3), 178–186. https://doi.org/10.3746/pnf.2014.19.3.178

Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144–158. https://doi.org/10.5344/ajev.1965.16.3.144

Speisky, H., Shahidi, F., Costa de Camargo, A., & Fuentes, J. (2022). Revisiting the oxidation of flavonoids: Loss, conservation or enhancement of their antioxidant properties. Antioxidants, 11(1), Article 133. https://doi.org/10.3390/antiox11010133

Srisuk, N., & Jirasatid, S. (2020). Characteristics co-encapsulation of Lactobacillus acidophilus with Dictyophora indusiata. Current Research in Nutrition and Food Science, 8(3), 1013–1024. https://doi.org/10.12944/CRNFSJ.8.3.28

Sundaram, I. K., Sarangi, D. D., Sundararajan, V., George, S., & Mohideen, S. S. (2018). Poly herbal formulation with anti-elastase and anti-oxidant properties for skin anti-aging. BMC Complementary and Alternative Medicine, 18(1), Article 33. https://doi.org/10.1186/s12906-018-2097-9

Tailor, C. S., & Goyal, A. (2014). Antioxidant activity by DPPH radical scavenging method of Ageratum conyzoides Linn. leaves. American Journal of Ethnomedicine, 1(4), 244–249.

Tomšik, A., Pavlić, B., Vladić, J., Ramić, M., Brindza, J., & Vidović, S. (2016). Optimization of ultrasound-assisted extraction of bioactive compounds from wild garlic (Allium ursinum L.). Ultrasonics Sonochemistry, 29, 502–511. https://doi.org/10.1016/j.ultsonch.2015.11.005

Vilas-Boas, A. A., Goméz-García, R., Machado, M., Nunes, C., Ribeiro, S., Nunes, J., Oliveira, A. L. S., & Pintado, M. (2023). Lavandula pedunculata polyphenol-rich extracts obtained by conventional, MAE and UAE methods: Exploring the bioactive potential and safety for use a medicine plant as food and nutraceutical ingredient. Foods, 12(24), Article 4462. https://doi.org/10.3390/foods12244462

Wang, J., Hu, S., Nie, S., Yu, Q., & Xie, M. (2016). Reviews on mechanisms of in vitro antioxidant activity of polysaccharides. Oxidative Medicine and Cellular Longevity, 2016(1), Article 5692852. https://doi.org/10.1155/2016/5692852

Wang, W., Song, X., Gao, Z., Zhao, H., Wang, X., Liu, M., & Jia, L. (2019). Anti-hyperlipidemic, antioxidant and organic protection effects of acidic-extractable polysaccharides from Dictyophora indusiata. International Journal of Biological Macromolecules, 129, 281–292. https://doi.org/10.1016/j.ijbiomac.2019.01.182

Wu, D. T., Zhao, Y. X., Guo, H., Gan, R. Y., Peng, L. X., Zhao, G., & Zou, L. (2021). Physicochemical and biological properties of polysaccharides from Dictyophora indusiata prepared by different extraction techniques. Polymers, 13(14), Article 2357. https://doi.org/10.3390/polym13142357

Zhang, Y., Lei, Y., Qi, S., Fan, M., Zheng, S., Huang, Q., & Lu, X. (2023). Ultrasonic-microwave-assisted extraction for enhancing antioxidant activity of Dictyophora indusiata polysaccharides: The difference mechanisms between single and combined assisted extraction. Ultrasonics Sonochemistry, 95, Article 106356. https://doi.org/10.1016/j.ultsonch.2023.106356