A comprehensive review of polymeric bioinks for vat photopolymerization 3D bioprinting: Theories, current advances, progress, and pharmaceutic applications

Main Article Content

Phuvamin Suriyaamporn
Tanasait Ngawhirunpat
Suwannee Panomsuk
Doungdaw Chantasart
Praneet Opanasopit

Abstract

Polymeric bioinks utilized in vat photopolymerization 3D bioprinting represent a novel technology in pharmaceutical applications, enabling the precise creation of complex drug delivery systems and groundbreaking approaches to personalized medicine. Vat photopolymerization methods regulate the polymerization of photosensitive bioinks by sequentially creating precise layers through light exposure. These polymeric bioinks are formulated from biocompatible materials comprising polymers, photoinitiators, photoabsorbers, plasticizers, and additives. Frequently utilized biocompatible polymers comprise gelatin methacryloyl, poly(ethylene glycol) diacrylate, and hyaluronic acid methacrylate. Critical parameters for these bioinks and the printing process include viscosity, temperature, printability, and fidelity, as well as mechanical properties, light intensity, exposure time, layer thickness, and post-processing. In pharmaceuticals, vat photopolymerization, a significant breakthrough in personalized medicine, is used to construct drug delivery devices for drug discovery and screening. Due to the high precision of this technology, it is possible to manufacture dosage forms with the desired release profile tailored to the patient, thereby increasing the effectiveness of the drug and patient compliance. Polymeric bioinks thus offer a novel approach to the production of pharmaceuticals through vat photopolymerization 3D bioprinting. Additional research has been directed toward the optimization of bioink characteristics to improve clinical outcomes and the customization of healthcare, revolutionizing the medical and pharmaceutical landscape through synergistic 3D bioprinting.

Downloads

Download data is not yet available.

Article Details

How to Cite
Suriyaamporn, P., Ngawhirunpat, T., Panomsuk, S., Chantasart, D., & Opanasopit, P. (2025). A comprehensive review of polymeric bioinks for vat photopolymerization 3D bioprinting: Theories, current advances, progress, and pharmaceutic applications. Science, Engineering and Health Studies, 19, 25010002. https://doi.org/10.69598/sehs.19.25010002
Section
Editorials and Reviews

References

Al Rashid, A., Ahmed, W., Khalid, M. Y., & Koç, M. (2021). Vat photopolymerization of polymers and polymer composites: Processes and applications. Additive Manufacturing, 47, Article 102279. https://doi.org/10.1016/j.addma.2021.102279

Ali, F., Kalva, S. N., & Koc, M. (2024). Advancements in 3D printing techniques for biomedical applications: A comprehensive review of materials consideration, post processing, applications, and challenges. Discover Materials, 4(1), Article 53. https://doi.org/10.1007/s43939-024-00115-4

Alzoubi, L., Aljabali, A. A. A., & Tambuwala, M. M. (2023). Empowering precision medicine: The impact of 3D printing on personalized therapeutic. AAPS PharmSciTech, 24(8), Article 228. https://doi.org/10.1208/s12249-023-02682-w

Awad, A., Xu, X., Ong, J. J., Goyanes, A., & Basit, A. W. (2023). Vat photopolymerisation additive manufacturing for pharmaceutical applications. In D. Lamprou (Ed.), Nano- and microfabrication techniques in drug delivery: Recent developments and future prospects (pp. 99–124). Springer. https://doi.org/10.1007/978-3-031-26908-0_5

Bagheri, A., & Jin, J. (2019). Photopolymerization in 3D printing. ACS Applied Polymer Materials, 1(4), 593–611. https://doi.org/10.1021/acsapm.8b00165

Bardini, R., & Di Carlo, S. (2023). Computational methods for biofabrication in tissue engineering and regenerative medicine — a literature review. Computational and Structural Biotechnology Journal, 23, 601–616. https://doi.org/10.1101/2023.03.03.530995

Bi, X., & Huang, R. (2022). 3D printing of natural fiber and composites: A state-of-the-art review. Materials & Design, 222, Article 111065. https://doi.org/10.1016/j.matdes.2022.111065

Billerbeck, K., Hägele, C., & Träger, J. (2024). Relation of the working curve and exposure intensity in VPP 3D-printing. Progress in Additive Manufacturing, 9(4), 1015–1023. https://doi.org/10.1007/s40964-023-00498-5

Bom, S., Martins, A. M., Ribeiro, H. M., & Marto, J. (2021). Diving into 3D (bio)printing: A revolutionary tool to customize the production of drug and cell-based systems for skin delivery. International Journal of Pharmaceutics, 605, Article 120794. https://doi.org/10.1016/j.ijpharm.2021.120794

Bonada, J., Muguruza, A., Fernández-Francos, X., & Ramis, X. (2017). Influence of exposure time on mechanical properties and photocuring conversion ratios for photosensitive materials used in additive manufacturing. Procedia Manufacturing, 13, 762–769. https://doi.org/10.1016/j.promfg.2017.09.182

Chekkaramkodi, D., Jacob, L., Shebeeb C, M., Umer, R., & Butt, H. (2024). Review of vat photopolymerization 3D printing of photonic devices. Additive Manufacturing, 86, Article 104189. https://doi.org/10.1016/j.addma.2024.104189

ChemEssen. (2025). Type II collagen. https://www.molinstincts.com/structure/type-II-collagen-fragment-cstr-CT1106429248.html

Cramer, N. B., Reddy, S. K., O'Brien, A. K., & Bowman, C. N. (2003). Thiol−ene photopolymerization mechanism and rate limiting step changes for various vinyl functional group chemistries. Macromolecules, 36(21), 7964–7969. https://doi.org/10.1021/ma034667s

Dzwonkowska-Zarzycka, M., & Sionkowska, A. (2024). Photoinitiators for medical applications—The latest advances. Molecules, 29(16), Article 3898. https://www.mdpi.com/1420-3049/29/16/3898

Elkhoury, K., Zuazola, J., & Vijayavenkataraman, S. (2023). Bioprinting the future using light: A review on photocrosslinking reactions, photoreactive groups, and photoinitiators. SLAS Technology, 28(3), 142–151. https://doi.org/10.1016/j.slast.2023.02.003

Fang, W., Yang, M., Wang, L., Li, W., Liu, M., Jin, Y., Wang, Y., Yang, R., Wang, Y., Zhang, K., & Fu, Q. (2023). Hydrogels for 3D bioprinting in tissue engineering and regenerative medicine: Current progress and challenges. International Journal of Bioprinting, 9(5), Article 759. https://doi.org/10.18063/ijb.759

Gadi, V., M, J., Pirla, N., & B, B. (2024). A comprehensive review of 3D printing applications in drug development and delivery: Review article. Journal of Pharma Insights and Research, 2(4), 139–145. https://doi.org/10.69613/5tp1qg79

Ge, G., Mandal, K., Haghniaz, R., Li, M., Xiao, X., Carlson, L., Jucaud, V., Dokmeci, M. R., Ho, G. W., & Khademhosseini, A. (2023). Deep eutectic solvents-based ionogels with ultrafast gelation and high adhesion in harsh environments. Advanced Functional Materials, 33(9), Article 2207388. https://doi.org/10.1002/adfm.202207388

Gong, J., Schuurmans, C. C. L., Genderen, A. M. V., Cao, X., Li, W., Cheng, F., He, J. J., López, A., Huerta, V., Manríquez, J., Li, R., Li, H., Delavaux, C., Sebastian, S., Capendale, P. E., Wang, H., Xie, J., Yu, M., Masereeuw, R.,…Zhang, Y. S. (2020). Complexation-induced resolution enhancement of 3D-printed hydrogel constructs. Nature Communications, 11, Article 1267. https://doi.org/10.1038/s41467-020-14997-4

Graça, A., Bom, S., Martins, A. M., Ribeiro, H. M., & Marto, J. (2024). Vat-based photopolymerization 3D printing: From materials to topical and transdermal applications. Asian Journal of Pharmaceutical Sciences, 19(4), Article 100940. https://doi.org/10.1016/j.ajps.2024.100940

Grof, Z., & Štěpánek, F. (2021). Artificial intelligence based design of 3D-printed tablets for personalised medicine. Computers & Chemical Engineering, 154, Article 107492. https://doi.org/10.1016/j.compchemeng.2021.107492

Gu, Z., Fu, J., Lin, H., & He, Y. (2020). Development of 3D bioprinting: From printing methods to biomedical applications. Asian Journal of Pharmaceutical Sciences, 15(5), 529–557. https://doi.org/10.1016/j.ajps.2019.11.003

Gugulothu, S. B., Asthana, S., Homer-Vanniasinkam, S., & Chatterjee, K. (2023). Trends in photopolymerizable bioinks for 3D bioprinting of tumor models. Journal of the American Chemical Society Au, 3(8), 2086–2106. https://doi.org/10.1021/jacsau.3c00281

Habib, M. A., & Khoda, B. (2022). Rheological analysis of bio-ink for 3D bio-printing processes. Journal of Manufacturing Processes, 76, 708–718. https://doi.org/10.1016/j.jmapro.2022.02.048

Hassanpour, M., Narongdej, P., Alterman, N., Moghtadernejad, S., & Barjasteh, E. (2024). Effects of post-processing parameters on 3D-printed dental appliances: A review. Polymers, 16(19), Article 2795. https://www.mdpi.com/2073-4360/16/19/2795

Hong, S. Y., Kim, Y. C., Wang, M., Kim, H.-I., Byun, D.-Y., Nam, J.-D., Chou, T.-W., Ajayan, P. M., Ci, L., & Suhr, J. (2018). Experimental investigation of mechanical properties of UV-Curable 3D printing materials. Polymer, 145, 88–94. https://doi.org/10.1016/j.polymer.2018.04.067

Hu, J., Wan, J., Xi, J., Shi, W., & Qian, H. (2024). AI-driven design of customized 3D-printed multi-layer capsules with controlled drug release profiles for personalized medicine. International Journal of Pharmaceutics, 656, Article 124114. https://doi.org/10.1016/j.ijpharm.2024.124114

Hu, Y., Luo, Z., & Bao, Y. (2025). Trends in photopolymerization 3D printing for advanced drug delivery applications. Biomacromolecules, 26(1), 85–117. https://doi.org/10.1021/acs.biomac.4c01004

Husár, B., Hatzenbichler, M., Mironov, V., Liska, R., Stampfl, J., & Ovsianikov, A. (2014). 6 - Photopolymerization-based additive manufacturing for the development of 3D porous scaffolds. In P. Dubruel & S. Van Vlierberghe (Eds.), Biomaterials for bone regeneration (pp. 149–201). Woodhead Publishing. https://doi.org/10.1533/9780857098104.2.149

Jamróz, W., Szafraniec, J., Kurek, M., & Jachowicz, R. (2018). 3D printing in pharmaceutical and medical applications - recent achievements and challenges. Pharmaceutical Research, 35(9), Article 176. https://doi.org/10.1007/s11095-018-2454-x

Ji, S., Zhao, Y., Zhai, X., Wang, L., Luo, H., Xu, Z., Dong, W., Wu, B., & Wei, W. (2023). A dual-crosslinked hydrogel based on gelatin methacryloyl and sulfhydrylated chitosan for promoting wound healing. International Journal of Molecular Sciences, 24(3), Article 2447. https://www.mdpi.com/1422-0067/24/3/2447

Jose, J., Peter, A., Thajudeen, K. Y., De Lourdes Gomes Pereira, M., V P, A., Bhat, S. G., & Michel, H. (2024). Recent advances in the design and development of bioink formulations for various biomedical applications. Results in Engineering, 22, Article 102060. https://doi.org/10.1016/j.rineng.2024.102060

Junk, S., & Bär, F. (2023). Design guidelines for additive manufacturing using masked stereolithography mSLA. Procedia CIRP, 119, 1122–1127. https://doi.org/10.1016/j.procir.2023.01.022

Kaushik, B., Subramaniyan, A. K., Pareek, M., Sharma, S., & Velu, R. (2023). 3D printing of pharmaceutical products using AI technology. In R. Velu, K. Subburaj, & A. K. Subramaniyan (Eds.), Digital design and manufacturing of medical devices and systems (pp. 233–248). Springer. https://doi.org/10.1007/978-981-99-7100-8_12

King, J. A., Zhang, X., & Ries, M. E. (2023). The formation of all-silk composites and time–temperature superposition. Materials, 16(10), Article 3804. https://www.mdpi.com/1996-1944/16/10/3804

Kok, X. W., Singh, A., & Raimi-Abraham, B. T. (2022). A design approach to optimise secure remote three-dimensional (3D) printing: A proof-of-concept study towards advancement in telemedicine. Healthcare (Basel), 10(6), Article 1114. https://doi.org/10.3390/healthcare10061114

Kónya, G., & Ficzere, P. (2024). The effect of layer thickness and orientation of 3D printed workpieces, on the micro- and macrogeometric properties of turned parts. Acta Polytechnica Hungarica, 21(2), 231–250. https://doi.org/10.12700/APH.21.2.2024.2.13

Kumari, J., Pandey, S., Jangde, K. K., Kumar, P. V., & Mishra, D. K. (2024). Evolution, integration, and challenges of 3D printing in pharmaceutical applications: A comprehensive review. Bioprinting, 44, Article e00367. https://doi.org/10.1016/j.bprint.2024.e00367

Lam, E. H. Y., Yu, F., Zhu, S., & Wang, Z. (2023). 3D bioprinting for next-generation personalized medicine. International Journal of Molecular Sciences, 24(7), Article 6357. https://doi.org/10.3390/ijms24076357

Li, W., Mille, L. S., Robledo, J. A., Uribe, T., Huerta, V., & Zhang, Y. S. (2020). Recent advances in formulating and processing biomaterial inks for vat polymerization-based 3D printing. Advanced Healthcare Materials, 9(15), Article e2000156. https://doi.org/10.1002/adhm.202000156

Li, Y., Zhang, X., Zhang, X., Zhang, Y., & Hou, D. (2023). Recent progress of the vat photopolymerization technique in tissue engineering: A brief review of mechanisms, methods, materials, and applications. Polymers, 15(19), Article 3940. https://www.mdpi.com/2073-4360/15/19/3940

Lu, G., Tang, R., Nie, J., & Zhu, X. (2024). Photocuring 3D printing of hydrogels: Techniques, materials, and applications in tissue engineering and flexible devices. Macromolecular Rapid Communications, 45(7), Article 2300661. https://doi.org/10.1002/marc.202300661

Mendoza-Cerezo, L., Rodríguez-Rego, J. M., Macías-García, A., Marcos-Romero, A. C., & Díaz-Parralejo, A. (2023). Evolution of bioprinting and current applications. International Journal of Bioprinting, 9(4), Article 742. https://doi.org/10.18063/ijb.742

Milliken, R. L., Quinten, T., Andersen, S. K., & Lamprou, D. A. (2024). Application of 3D printing in early phase development of pharmaceutical solid dosage forms. International Journal of Pharmaceutics, 653, Article 123902. https://doi.org/10.1016/j.ijpharm.2024.123902

Moon, S. H., Park, T. Y., Cha, H. J., & Yang, Y. J. (2024). Photo-/thermo-responsive bioink for improved printability in extrusion-based bioprinting. Materials Today Bio, 25, Article 100973. https://doi.org/10.1016/j.mtbio.2024.100973

Murphy, C. A., Lim, K. S., & Woodfield, T. B. F. (2022). Next evolution in organ-scale biofabrication: Bioresin design for rapid high-resolution vat polymerization. Advanced Materials, 34(20), Article 2107759. https://doi.org/10.1002/adma.202107759

Pagac, M., Hajnys, J., Ma, Q.-P., Jancar, L., Jansa, J., Stefek, P., & Mesicek, J. (2021). A review of vat photopolymerization technology: Materials, applications, challenges, and future trends of 3D printing. Polymers, 13(4), Article 598. https://www.mdpi.com/2073-4360/13/4/598

Parihar, A., Parihar, D. S., Gaur, K., Arya, N., Choubey, V. K., & Khan, R. (2024). 3D bioprinting for drug development and screening: Recent trends towards personalized medicine. Hybrid Advances, 7, Article 100320. https://doi.org/10.1016/j.hybadv.2024.100320

Pathak, K., Saikia, R., Das, A., Das, D., Islam, M. A., Pramanik, P., Parasar, A., Borthakur, P. P., Sarmah, P., Saikia, M., & Borthakur, B. (2023). 3D printing in biomedicine: Advancing personalized care through additive manufacturing. Exploration of Medicine, 4, 1135–1167. https://doi.org/10.37349/emed.2023.00200

Patrocinio, D., Galván-Chacón, V., Gómez-Blanco, J. C., Miguel, S. P., Loureiro, J., Ribeiro, M. P., Coutinho, P., Pagador, J. B., & Sanchez-Margallo, F. M. (2023). Biopolymers for tissue engineering: Crosslinking, printing techniques, and applications. Gels, 9(11), Article 890. https://www.mdpi.com/2310-2861/9/11/890

Qin, X.-H., Ovsianikov, A., Stampfl, J., & Liska, R. (2014). Additive manufacturing of photosensitive hydrogels for tissue engineering applications. BioNanoMaterials, 15(3–4), 49–70. https://doi.org/doi:10.1515/bnm-2014-0008

Schittecatte, L., Geertsen, V., Bonamy, D., Nguyen, T., & Guenoun, P. (2023). From resin formulation and process parameters to the final mechanical properties of 3D printed acrylate materials. MRS Communications, 13(3), 357–377. https://doi.org/10.1557/s43579-023-00352-3

Schwab, A., Levato, R., D’Este, M., Piluso, S., Eglin, D., & Malda, J. (2020). Printability and shape fidelity of bioinks in 3D bioprinting. Chemical Reviews, 120(19), 11028–11055. https://doi.org/10.1021/acs.chemrev.0c00084

Seo, J. W., Kim, G. M., Choi, Y., Cha, J. M., & Bae, H. (2022). Improving printability of digital-light-processing 3D bioprinting via photoabsorber pigment adjustment. International Journal of Molecular Sciences, 23(10), Article 5428. https://doi.org/10.3390/ijms23105428

Shah, M., Ullah, A., Azher, K., Rehman, A. U., Juan, W., Aktürk, N., Tüfekci, C. S., & Salamci, M. U. (2023). Vat photopolymerization-based 3D printing of polymer nanocomposites: Current trends and applications. RSC Advances, 13(2), 1456–1496. https://doi.org/10.1039/d2ra06522c

Shaukat, U., Rossegger, E., & Schlögl, S. (2022). A review of multi-material 3D printing of functional materials via vat photopolymerization. Polymers, 14(12), Article 2449. https://www.mdpi.com/2073-4360/14/12/2449

Simon, M. C., Laios, K., Nikolakakis, I., & Papaioannou, T. G. (2024). Three-dimensional printing technology in drug design and development: Feasibility, challenges, and potential applications. Journal of Personalized Medicine, 14(11), Article 1080. https://doi.org/10.3390/jpm14111080

Sun, X., Ren, W., Xie, L., Ren, Q., Zhu, Z., Jia, Q., Jiang, W., Jin, Z., & Yu, Y. (2024). Recent advances in 3D bioprinting of tissues and organs for transplantation and drug screening. Virtual and Physical Prototyping, 19(1), Article e2384662. https://doi.org/10.1080/17452759.2024.2384662

Suriyaamporn, P., Pamornpathomkul, B., Patrojanasophon, P., Ngawhirunpat, T., Rojanarata, T., & Opanasopit, P. (2024). The artificial intelligence-powered new era in pharmaceutical research and development: A review. AAPS PharmSciTech, 25(6), Article 188. https://doi.org/10.1208/s12249-024-02901-y

Suriyaamporn, P., Rangsimawong, W., & Ngawhirunpat, T. (2020). Mucoadhesive polymers for ocular drug delivery. pharmacycouncil. https://ccpe.pharmacycouncil.org/index.php?option=article_detail&subpage=article_detail&id=795

Tan, G., Xu, J., Yu, Q., Zhang, J., Hu, X., Sun, C., & Zhang, H. (2022). Photo-crosslinkable hydrogels for 3D bioprinting in the repair of osteochondral defects: A review of present applications and future perspectives. Micromachines (Basel), 13(7), Article 1038. https://doi.org/10.3390/mi13071038

Tomal, W., & Ortyl, J. (2020). Water-soluble photoinitiators in biomedical applications. Polymers, 12(5), Article 1073. https://www.mdpi.com/2073-4360/12/5/1073

Tracy, T., Wu, L., Liu, X., Cheng, S., & Li, X. (2023). 3D printing: Innovative solutions for patients and pharmaceutical industry. International Journal of Pharmaceutics, 631, Article 122480. https://doi.org/10.1016/j.ijpharm.2022.122480

Tripathi, S., Mandal, S. S., Bauri, S., & Maiti, P. (2023). 3D bioprinting and its innovative approach for biomedical applications. MedComm, 4(1), Article e194. https://doi.org/10.1002/mco2.194

Vora, L. K., Gholap, A. D., Jetha, K., Thakur, R. R. S., Solanki, H. K., & Chavda, V. P. (2023). Artificial intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics, 15(7), Article 1916. https://doi.org/10.3390/pharmaceutics15071916

Ware, H. O. T., Hai, R., & Sun, C. (2023). Vat photopolymerization. In E. Pei, A. Bernard, D. Gu, C. Klahn, M. Monzón, M. Petersen, & T. Sun (Eds.), Springer Handbook of Additive Manufacturing (pp. 349–370). Springer. https://doi.org/10.1007/978-3-031-20752-5_22

Wistner, S. C., Rashad, L., & Slaughter, G. (2023). Advances in tissue engineering and biofabrication for in vitro skin modeling. Bioprinting, 35, Article e00306. https://doi.org/10.1016/j.bprint.2023.e00306

Wu, H., Fahy, W. P., Kim, S., Kim, H., Zhao, N., Pilato, L., Kafi, A., Bateman, S., & Koo, J. H. (2020). Recent developments in polymers/polymer nanocomposites for additive manufacturing. Progress in Materials Science, 111, Article 100638. https://doi.org/10.1016/j.pmatsci.2020.100638

Xu, S., Ahmed, S., Momin, M., Hossain, A., & Zhou, T. (2023). Unleashing the potential of 3D printing soft materials. Device, 1(3), Article 100067. https://doi.org/10.1016/j.device.2023.100067

Xu, X., Awad, A., Robles-Martinez, P., Gaisford, S., Goyanes, A., & Basit, A. W. (2021). Vat photopolymerization 3D printing for advanced drug delivery and medical device applications. Journal of Controlled Release, 329, 743–757. https://doi.org/10.1016/j.jconrel.2020.10.008

Yilmaz, G., & Yagci, Y. (2020). Light-induced step-growth polymerization. Progress in Polymer Science, 100, Article 101178. https://doi.org/10.1016/j.progpolymsci.2019.101178

Yu, C., Schimelman, J., Wang, P., Miller, K. L., Ma, X., You, S., Guan, J., Sun, B., Zhu, W., & Chen, S. (2020). Photopolymerizable biomaterials and light-based 3D printing strategies for biomedical applications. Chemical Reviews, 120(19), 10695–10743. https://doi.org/10.1021/acs.chemrev.9b00810

Yu, K., Zhang, X., Sun, Y., Gao, Q., Fu, J., Cai, X., & He, Y. (2022). Printability during projection-based 3D bioprinting. Bioactive Materials, 11, 254–267. https://doi.org/10.1016/j.bioactmat.2021.09.021

Zennifer, A., Manivannan, S., Sethuraman, S., Kumbar, S. G., & Sundaramurthi, D. (2022). 3D bioprinting and photocrosslinking: Emerging strategies & future perspectives. Biomaterials Advances, 134, Article 112576. https://doi.org/10.1016/j.msec.2021.112576

Zhang, F., Zhu, L., Li, Z., Wang, S., Shi, J., Tang, W., Li, N., & Yang, J. (2021). The recent development of vat photopolymerization: A review. Additive Manufacturing, 48(Part B), Article 102423. https://doi.org/10.1016/j.addma.2021.102423

Zhou, T., Yuk, H., Hu, F., Wu, J., Tian, F., Roh, H., Shen, Z., Gu, G., Xu, J., Lu, B., & Zhao, X. (2023). 3D printable high-performance conducting polymer hydrogel for all-hydrogel bioelectronic interfaces. Nature Materials, 22(7), 895–902. https://doi.org/10.1038/s41563-023-01569-2