Development and evaluation of a triphala-based throat spray: Physicochemical properties, stability, and pharmacological potency

Main Article Content

Phuvamin Suriyaamporn
Wissanu Siriwiboonchaiyakul
Supakin Somboon
Sirapob Phonmanop
Malai Satiraphan
Suwannee Panomsuk

Abstract

Throat sprays are widely used, act quickly, and can help relieve a sore throat from several viral or bacterial infection. There are many types of throat sprays available today, depending on different components such as chemical compounds and herbal extracts. Triphala, a herb, consists of three dried fruits: Terminalia chebula, Terminalia bellirica, and Phyllanthus emblica. The chemical compounds in Triphala mainly consist of gallic acid, polyphenol, and tannin. These compounds have been reported to exhibit high antioxidant activity and anti-inflammatory effects. Then, this study aimed to develop a throat spray containing Triphala extract with suitable physicochemical properties, pharmacological potency and stability. Throat sprays with Triphala extract were investigated for their physicochemical (physical characteristics, pH, spray ability, and viscosity) and pharmacological properties (antioxidant and anti-inflammatory activity). All formulations exhibited suitable sprayability, with pH values ranging from 3.2 to 4.2 and no significant differences observed. The formulations showed significantly higher anti-inflammatory and antioxidant activities than the control. A stability study was performed over five weeks under three storage conditions. The formula containing 0.25% v/v Triphala extract exhibited suitable physicochemical and pharmacological properties. Moreover, the 0.25% v/v Triphala extract throat spray showed no precipitation under the three storage conditions, and the anti-inflammatory and antioxidant activities did not change significantly after storage. This study demonstrated a novel, suitable Triphala extract throat spray formulation as an alternative treatment for sore throat.

Downloads

Download data is not yet available.

Article Details

How to Cite
Suriyaamporn, P., Siriwiboonchaiyakul, W., Somboon, S., Phonmanop, S., Satiraphan, M., & Panomsuk, S. (2025). Development and evaluation of a triphala-based throat spray: Physicochemical properties, stability, and pharmacological potency. Science, Engineering and Health Studies, 19, 25050011. https://doi.org/10.69598/sehs.19.25050011
Section
Health sciences

References

Addey, D., & Shephard, A. (2012). Incidence, causes, severity and treatment of throat discomfort: A four-region online questionnaire survey. BMC Ear, Nose and Throat Disorders, 12(1), Article 9. https://doi.org/10.1186/1472-6815-12-9

Artificial sweeteners. (2016). In J. K. Aronson (Ed.), Meyler’s side effects of drugs: The international encyclopedia of adverse drug reactions and interactions (sixteenth edition). Elsevier Science. https://doi.org/10.1016/B978-0-444-53717-1.00330-9

Ashokkumar, D. (2007). Pharmacognostical investigations on Triphala churnam. Ancient Science of Life, 26(3), 40–44.

Babu, D., Gurumurthy, P., Borra, S. K., & Cherian, K. M. (2013). Antioxidant and free radical scavenging activity of Triphala determined by using different in vitro models. Journal of Medicinal Plants Research, 7(39), 2898–2905.

Baliga, S., Muglikar, S., & Kale, R. (2013). Salivary pH: A diagnostic biomarker. Journal of Indian Society of Periodontology, 17(4), 461–465. https://doi.org/10.4103/0972-124x.118317

Boseila, A., Ghareeb, A. Z., AbdElwahab, M. G., Seadawy, M. G., Al-Karmalawy, A. A., Yassa, N. W., & Ghareeb, D. A. (2024). Throat spray formulated with virucidal Pharmaceutical excipients as an effective early prophylactic or treatment strategy against pharyngitis post-exposure to SARS-CoV-2. European Journal of Pharmaceutics and Biopharmaceutics, 199, Article 114279. https://doi.org/10.1016/j.ejpb.2024.114279

Cheng, Y. S. (2014). Mechanisms of pharmaceutical aerosol deposition in the respiratory tract. AAPS PharmSciTech, 15(3), 630–640. https://doi.org/10.1208/s12249-014-0092-0

Cots, J. M., Alós, J.-I., Bárcena, M., Boleda, X., Cañada, J. L., Gómez, N., Mendoza, A., Vilaseca, I., & Llor, C. (2015). Recommendations for management of acute pharyngitis in adults. Acta Otorrinolaringológica Española, 66(3), 159–170. https://doi.org/10.1016/j.otorri.2015.01.001

Ghimire, A., Bhattarai, P., & Adhikari, P. (2023). A review on the ingredients of Triphala (Harro, Barro and Amala). Kalika Journal of Multidisciplinary Studies, 5(1), 143–156. https://doi.org/10.3126/kjms.v5i1.60917

Gunaydin, C., & Bilge, S. S. (2018). Effects of nonsteroidal anti-inflammatory drugs at the molecular level. The Eurasian Journal of Medicine, 50(2), 116–121. https://doi.org/10.5152/eurasianjmed.2018.0010

Intatham, S., Taychaworaditsakul, W., Khonsung, P., Chansakaow, S., Jaijoy, K., Lertprasertsuke, N., Soonthornchareonnon, N., & Sireeratawong, S. (2024). Safety evaluation for acute and chronic oral toxicity of Maha Pigut Triphala contains three medicinal fruits in sprague-dawley rats. Biology, 13(12), Article 1005. https://www.mdpi.com/2079-7737/13/12/1005

Jantrapirom, S., Hirunsatitpron, P., Potikanond, S., Nimlamool, W., & Hanprasertpong, N. (2021). Pharmacological benefits of Triphala: A perspective for allergic rhinitis. Frontiers in Pharmacology, 12, Article 628198. https://doi.org/10.3389/fphar.2021.628198

Jolly, L. (2004). 5 - alternative sweeteners. In J. Kingsman & C. Gafner (Eds.), Sugar trading manual (pp. 5a–47). Woodhead Publishing. https://doi.org/10.1016/B978-1-85573-457-9.50011-1

Kalaiselvan, S., & Rasool, M. K. (2016). Triphala herbal extract suppresses inflammatory responses in LPS-stimulated RAW 264.7 macrophages and adjuvant-induced arthritic rats via inhibition of NF-κB pathway. Journal of Immunotoxicology, 13(4), 509–525. https://doi.org/10.3109/1547691x.2015.1136010

Lovato, A., Rossettini, G., & de Filippis, C. (2020). Sore throat in COVID-19: Comment on “Clinical characteristics of hospitalized patients with SARS-CoV-2 infection: A single arm meta-analysis”. Journal of Medical Virology, 92(7), 714–715. https://doi.org/10.1002/jmv.25815

Mallah, S. I., Ghorab, O. K., Al-Salmi, S., Abdellatif, O. S., Tharmaratnam, T., Iskandar, M. A., Sefen, J. A. N., Sidhu, P., Atallah, B., El-Lababidi, R., & Al-Qahtani, M. (2021). COVID-19: Breaking down a global health crisis. Annals of Clinical Microbiology and Antimicrobials, 20(1), Article 35. https://doi.org/10.1186/s12941-021-00438-7

Msomi, N. Z., Erukainure, O. L., & Islam, M. S. (2021). Suitability of sugar alcohols as antidiabetic supplements: A review. Journal of Food and Drug Analysis, 29(1), Article 1. https://doi.org/10.38212/2224-6614.3107

Mukherjee, P. K., Banerjee, S., Das Gupta, B., & Kar, A. (2022). Chapter 1 - evidence-based validation of herbal medicine: Translational approach. In P. K. Mukherjee (Ed.), Evidence-based validation of herbal medicine (second edition) (pp. 1–41). Elsevier. https://doi.org/10.1016/B978-0-323-85542-6.00025-1

Nirmala, M. J., Dhas, S. P., Saikrishna, N., Raj, U. S., Sai, P. S., & Nagarajan, R. (2022). Chapter 3 - green nanoemulsions: Components, formulation, techniques of characterization, and applications. In K. A. Abd-Elsalam & K. Murugan (Eds.), Bio-based nanoemulsions for agri-food applications (pp. 47–69). Elsevier. https://doi.org/10.1016/B978-0-323-89846-1.00013-9

Panomsuk, S., Songsriwittaya, K., Chanmeesri, N., Boonyatulanont, P., & Nuntharatanapong, N. (2021). Development of Triphala extract-loaded mucoadhesive films for aphthous ulcers. Key Engineering Materials, 901, 92–97. https://doi.org/10.4028/www.scientific.net/KEM.901.92

Patel, T., Ishiuji, Y., & Yosipovitch, G. (2007). Menthol: A refreshing look at this ancient compound. Journal of the American Academy of Dermatology, 57(5), 873–878. https://doi.org/10.1016/j.jaad.2007.04.008

Pelvan, E., Serhatlı, M., Karaoğlu, Ö., Karadeniz, B., Pembeci Kodolbaş, C., Aslı Öncü, N., Çakırca, G., Damarlı, E., Başdoğan, G., Mergen Duymaz, G., Emir Akyıldız, İ., Düz, G., Acar, S., Özhan, Y., Sipahi, H., Charehsaz, M., Aydın, A., Yesilada, E., & Alasalvar, C. (2022). Development of propolis and essential oils containing oral/throat spray formulation against SARS-CoV-2 infection. Journal of Functional Foods, 97, Article 105225. https://doi.org/10.1016/j.jff.2022.105225

Peterson, C. T., Denniston, K., & Chopra, D. (2017). Therapeutic uses of Triphala in ayurvedic medicine. The Journal of Alternative and Complementary Medicine, 23(8), 607–614. https://doi.org/10.1089/acm.2017.0083

Prananda, A. T., Dalimunthe, A., Harahap, U., Simanjuntak, Y., Peronika, E., Karosekali, N. E., Hasibuan, P. A. Z., Syahputra, R. A., Situmorang, P. C., & Nurkolis, F. (2023). Phyllanthus emblica: A comprehensive review of its phytochemical composition and pharmacological properties. Frontiers in Pharmacology, 14, Article 1288618. https://doi.org/10.3389/fphar.2023.1288618

Prasad, S., & Srivastava, S. K. (2020). Oxidative stress and cancer: Chemopreventive and therapeutic role of Triphala. Antioxidants (Basel), 9(1), Article 72. https://doi.org/10.3390/antiox9010072

Rouzer, C. A., & Marnett, L. J. (2020). Structural and chemical biology of the interaction of cyclooxygenase with substrates and non-steroidal anti-inflammatory drugs. Chemical Reviews, 120(15), 7592–7641. https://doi.org/10.1021/acs.chemrev.0c00215

Samprasit, W., Suriyaamporn, P., Sriamornsak, P., Opanasopit, P., & Chamsai, B. (2024). Resveratrol-loaded lipid-based nanocarriers for topical delivery: Comparative physical properties and antioxidant activity. OpenNano, 19, Article 100211. https://doi.org/10.1016/j.onano.2024.100211

Sharma, S., Gupta, M., & Bhadauria, R. (2014). Mycobiota of commercially available Triphala powder: A well known dietary supplement of indian system of medicine. Journal of Mycology, 2014(1), Article 836036. https://doi.org/10.1155/2014/836036

Sofiane, G., Wafa, N., & Ouarda, D. (2015). Antioxidant, antimicrobial and anti-inflammatory activities of flavonoids and tannins extracted from Polypodium vulgare L. Asian Journal of Biochemical and Pharmaceutical Research, 4(5), 114–122.

Struyf, T., Deeks, J. J., Dinnes, J., Takwoingi, Y., Davenport, C., Leeflang, M. M., Spijker, R., Hooft, L., Emperador, D., Domen, J., Tans, A., Janssens, S., Wickramasinghe, D., Lannoy, V., Horn, S. R. A., & Van den Bruel, A. (2022). Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19. Cochrane Database of Systematic Reviews, 5(5), Article CD013665. https://doi.org/10.1002/14651858.CD013665.pub3

Sugibayashi, K., Yamamoto, N., Itakura, S., Okada, A., Hijikuro, I., & Todo, H. (2020). Development of spray formulations applied to the oral mucosa using non-lamellar liquid crystal-forming lipids. Chemical and Pharmaceutical Bulletin (Tokyo), 68(11), 1025–1033. https://doi.org/10.1248/cpb.c20-00333

Suriyaamporn, P., Aumklad, P., Rojanarata, T., Patrojanasophon, P., Ngawhirunpat, T., Pamornpathomkul, B., & Opanasopit, P. (2024). Fabrication of controlled-release polymeric microneedles containing progesterone-loaded self-microemulsions for transdermal delivery. Pharmaceutical Development and Technology, 29(2), 98–111. https://doi.org/10.1080/10837450.2024.2307996

Suriyaamporn, P., Sahatsapan, N., Patrojanasophon, P., Opanasopit, P., Kumpugdee-Vollrath, M., & Ngawhirunpat, T. (2023). Optimization of In Situ gel-forming chlorhexidine-encapsulated polymeric nanoparticles using design of experiment for periodontitis. AAPS PharmSciTech, 24(6), Article 161. https://doi.org/10.1208/s12249-023-02600-0

Umapathy, E., Ndebia, E. J., Meeme, A., Adam, B., Menziwa, P., Nkeh-Chungag, B. N., & Iputo, J. E. (2010). An experimental evaluation of Albuca setosa aqueous extract on membrane stabilization, protein denaturation and white blood cell migration during acute inflammation. Journal of Medicinal Plants Research, 4(9), 789–795. https://doi.org/10.5897/JMPR10.056

Umar, A. K., Butarbutar, M., Sriwidodo, S., & Wathoni, N. (2020). Film-forming sprays for topical drug delivery. Drug Design, Development and Therapy, 14, 2909–2925. https://doi.org/10.2147/dddt.S256666