Towards efficient furfural production: A review of biphasic solvent systems for enhanced yields and industrial scalability

Main Article Content

Kritsana Namhaed
Worapon Kiatkittipong
Patrick Cognet
Vesna Najdanovic-Visak
Tetsuya Kida
Armando T. Quitain
Suttichai Assabumrungrat

Abstract

Furfural, a valuable platform chemical with wide industrial applications, has been produced for decades. Renewed interest in biorefinery processes has driven efforts to improve its production and expand industrial applications. However, challenges in achieving high furfural yield and purity after recovery remain significant bottlenecks. Coupling the reaction with simultaneous separation has emerged as a promising approach, with biphasic solvent systems gaining significant research attention. This review consolidates recent progress in using organic solvents within biphasic systems for furfural production from both simple sugars and raw biomass, covering both homogeneous and heterogeneous catalytic systems, as well as batch and continuous operation modes. Key topics include the formation and mechanisms underlying biphasic systems, which provide insights for process design, and an analysis of factors influencing furfural yields, aiding in reaction optimization. Strategies to enhance process efficiency-such as solvent selection and tuning, phase ratio adjustment, catalyst stabilization, and integration into continuous-flow systems-are discussed in detail. The impact of these strategies on catalytic performance and furfural selectivity is highlighted, along with a techno-economic analysis showing a promising minimum selling price. Finally, this review addresses the opportunities, challenges, and limitations associated with advancing furfural production in biphasic solvent systems.

Downloads

Download data is not yet available.

Article Details

How to Cite
Namhaed, K., Kiatkittipong, W., Cognet, P., Najdanovic-Visak, V., Kida, T., Quitain, A. T., & Assabumrungrat, S. (2025). Towards efficient furfural production: A review of biphasic solvent systems for enhanced yields and industrial scalability. Science, Engineering and Health Studies, 19, 25010003. https://doi.org/10.69598/sehs.19.25010003
Section
Editorials and Reviews

References

Aellig, C., Scholz, D., Dapsens, P. Y., Mondelli, C., & Pérez-Ramírez, J. (2015). When catalyst meets reactor: Continuous biphasic processing of xylan to furfural over GaUSY/Amberlyst-36. Catalysis Science & Technology, 5(1), 142–149. https://doi.org/10.1039/C4CY00973H

Agirrezabal-Telleria, I., Requies, J., Güemez, M. B., & Arias, P. L. (2012) Pore size tuning of functionalized SBA-15 catalysts for the selective production of furfural from xylose. Applied Catalysis B: Environmental, 115–116, 169–178. https://doi.org/10.1016/j.apcatb.2011.12.025

Alonso, D. M., Hakim, S. H., Zhou, S., Won, W., Hosseinaei, O., Tao, J., Garcia-Negron, V., Motagamwala, A. H., Mellmer, M. A., Huang, K., Houtman, C. J., Labbé, N., Harper, D. P., Maravelias, C. T., Runge, T., & Dumesic, J. A. (2017). Increasing the revenue from lignocellulosic biomass: Maximizing feedstock utilization. Science Advances, 3(5), Article e1603301. https://doi.org/10.1126/sciadv.1603301

Bhaumik, P., & Dhepe, P. L. (2016). Solid acid catalyzed synthesis of furans from carbohydrates. Catalysis Reviews, 58(1), 36–112. https://doi.org/10.1080/01614940.2015.1099894

Bhogeswararao, S., & Srinivas, D. (2015). Catalytic conversion of furfural to industrial chemicals over supported Pt and Pd catalysts. Journal of Catalysis, 327, 65–77. https://doi.org/10.1016/j.jcat.2015.04.018

Börjesson, M., Larsson, A., Ström, A., & Westman, G. (2019). A process for preparing modified hemicellulose (Patent No. WO2019081677A1). World Intellectual Property Organization. https://patents.google.com/patent/WO2019081677A1/en

Bozell, J. J., & Petersen, G. R. (2010). Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chemistry, 12(4), 539–554. https://doi.org/10.1039/b922014c

Brownlee, H. J., & Miner, C. S. (1948). Industrial development of furfural. Industrial & Engineering Chemistry, 40(2), 201–204. https://doi.org/10.1021/ie50458a005

Bruce, S. M., Zong, Z., Chatzidimitriou, A., Avci, L. E., Bond, J. Q., Carreon, M. A., & Wettstein, S. G. (2016). Small pore zeolite catalysts for furfural synthesis from xylose and switchgrass in a γ-valerolactone/water solvent. Journal of Molecular Catalysis A: Chemical, 422, 18–22. https://doi.org/10.1016/j.molcata.2016.02.025

Cai, T., Liu, C., Jiang, J., Meng, X., Ragauskas, A. J., & Wang, K. (2024). Innovative biphasic solvent systems for lignocellulosic biorefinery. Trends in Chemistry, 6(5), 219–233. https://doi.org/10.1016/j.trechm.2024.03.003

Cai, T., Liu, C., Liang, J., Ma, Y., Hu, J., Jiang, J., & Wang, K. (2023). The weak interaction between polar aprotic solvent and saline water enables efficient production of furans from lignocellulosic biomass. Green Chemistry, 25(1), 375–383. https://doi.org/10.1039/D2GC03956G

Campos Molina, M. J., Mariscal, R., Ojeda, M., & López Granados, M. (2012). Cyclopentyl methyl ether: A green co-solvent for the selective dehydration of lignocellulosic pentoses to furfural. Bioresource Technology, 126, 321–327. https://doi.org/10.1016/j.biortech.2012.09.049

Cavalcanti, M. T. H., Carneiro-da-Cunha, M. G., Brandi, I. V., Porto, T. S., Converti, A., Lima Filho, J. L., Porto, A. L. F., & Pessoa, A. (2008). Continuous extraction of α-toxin from a fermented broth of Clostridium perfringens type A in perforated rotating disc contactor using aqueous two-phase PEG–phosphate system. Chemical Engineering and Processing: Process Intensification, 47(9–10), 1771–1776. https://doi.org/10.1016/j.cep.2007.09.018

Chheda, J. N., Román-Leshkov, Y., & Dumesic, J. A. (2007). Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides. Green Chemistry, 9(4), 342–350. https://doi.org/10.1039/B611568C

Cousin, E., Namhaed, K., Pérès, Y., Cognet, P., Delmas, M., Hermansyah, H., Gozan, M., Alaba, P. A., & Aroua, M. K. (2022). Towards efficient and greener processes for furfural production from biomass: A review of the recent trends. Science of the Total Environment, 847, Article 157599. https://doi.org/10.1016/j.scitotenv.2022.157599

Dashtban, M., Gilbert, A., & Fatehi, P. (2012). Production of furfural: Overview and challenges. Journal of Science & Technology for Forest Products and Processes, 2(4), 44–53.

Davis, R., Tao, L., Tan, E. C. D., Biddy, M. J., Beckham, G. T., Scarlata, C., Jacobson, J., Cafferty, K., Ross, J., Lukas, J., Knorr, D., & Schoen, P. (2013). Process design and economics for the conversion of lignocellulosic biomass to hydrocarbons: Dilute-acid and enzymatic deconstruction of biomass to sugars and biological conversion of sugars to hydrocarbons. National Renewable Energy Laboratory (NREL). https://doi.org/10.2172/1107470

De Jong, W., & Marcotullio, G. (2010). Overview of biorefineries based on co-production of furfural, existing concepts and novel developments. International Journal of Chemical Reactor Engineering, 8(1). https://doi.org/10.2202/1542-6580.2174

Delbecq, F., Takahashi, Y., Kondo, T., Corbas, C. C., Ramos, E. R., & Len, C. (2018). Microwave assisted efficient furfural production using nano-sized surface-sulfonated diamond powder. Catalysis Communications, 110, 74–78. https://doi.org/10.1016/j.catcom.2018.03.020

Delbecq, F., Wang, Y., & Len, C. (2016). Conversion of xylose, xylan and rice husk into furfural via betaine and formic acid mixture as novel homogeneous catalyst in biphasic system by microwave-assisted dehydration. Journal of Molecular Catalysis A: Chemical, 423, 520–525. https://doi.org/10.1016/j.molcata.2016.07.003

Deng, A., Lin, Q., Yan, Y., Li, H., Ren, J., Liu, C., & Sun, R. (2016). A feasible process for furfural production from the pre-hydrolysis liquor of corncob via biochar catalysts in a new biphasic system. Bioresource Technology, 216, 754–760. https://doi.org/10.1016/j.biortech.2016.06.002

Dodds, D. R., & Gross, R. A. (2007). Chemicals from biomass. Science, 318(5854), 1250–1251. https://doi.org/10.1126/science.1146356

Dulie, N. W., Woldeyes, B., Demsash, H. D., & Jabasingh, A. S. (2021). An insight into the valorization of hemicellulose fraction of biomass into furfural: Catalytic conversion and product separation. Waste and Biomass Valorization, 12(2), 531–552. https://doi.org/10.1007/s12649-020-00946-1

Eseyin, A. E., & Steele, P. H. (2015). An overview of the applications of furfural and its derivatives. International Journal of Advanced Chemistry, 3(2), 42–47. https://doi.org/10.14419/ijac.v3i2.5048

Esteban, J., Vorholt, A. J., & Leitner, W. (2020). An overview of the biphasic dehydration of sugars to 5-hydroxymethylfurfural and furfural: A rational selection of solvents using COSMO-RS and selection guides. Green Chemistry, 22(7), 2097–2128. https://doi.org/10.1039/C9GC04208C

Gao, H., Liu, H., Pang, B., Yu, G., Du, J., Zhang, Y., Wang, H., & Mu, X. (2014). Production of furfural from waste aqueous hemicellulose solution of hardwood over ZSM-5 zeolite. Bioresource Technology, 172, 453–456. https://doi.org/10.1016/j.biortech.2014.09.026

Garrett, E. R., & Dvorchik, B. H. (1969). Kinetics and mechanisms of the acid degradation of the aldopentoses to furfural. Journal of Pharmaceutical Sciences, 58(7), 813–820. https://doi.org/10.1002/jps.2600580703

Gómez Millán, G., Bangalore Ashok, R. P., Oinas, P., Llorca, J., & Sixta, H. (2021). Furfural production from xylose and birch hydrolysate liquor in a biphasic system and techno-economic analysis. Biomass Conversion and Biorefinery, 11(5), 2095–2106. https://doi.org/10.1007/s13399-020-00702-4

Gómez Millán, G., Hellsten, S., King, A. W. T., Pokki, J.-P., Llorca, J., & Sixta, H. (2019). A comparative study of water-immiscible organic solvents in the production of furfural from xylose and birch hydrolysate. Journal of Industrial and Engineering Chemistry, 72, 354–363. https://doi.org/10.1016/j.jiec.2018.12.037

Guenic, S. L., Delbecq, F., Ceballos, C., & Len, C. (2015). Microwave-assisted dehydration of D-xylose into furfural by diluted inexpensive inorganic salts solution in a biphasic system. Journal of Molecular Catalysis A: Chemical, 410, 1–7. https://doi.org/10.1016/j.molcata.2015.08.019

Guo, T., Li, X., Liu, X., Guo, Y., & Wang, Y. (2018). Catalytic transformation of lignocellulosic biomass into arenes, 5‐hydroxymethylfurfural, and furfural. ChemSusChem, 11(16), 2758–2765. https://doi.org/10.1002/cssc.201800967

Guo, W., Bruining, H. C., Heeres, H. J., & Yue, J. (2023). Insights into the reaction network and kinetics of xylose conversion over combined Lewis/Brønsted acid catalysts in a flow microreactor. Green Chemistry, 25(15), 5878–5898. https://doi.org/10.1039/D3GC00153A

Gupta, D., Ahmad, E., Pant, K. K., & Saha, B. (2017). Efficient utilization of potash alum as a green catalyst for production of furfural, 5-hydroxymethylfurfural and levulinic acid from mono-sugars. RSC Advances, 7(67), 41973–41979. https://doi.org/10.1039/C7RA07147G

Haq, I. u., Qaisar, K., Nawaz, A., Akram, F., Mukhtar, H., Zohu, X., Xu, Y., Mumtaz, M. W., Rashid, U., Ghani, W. A. W. A. K., & Choong, T. S. Y. (2021). Advances in valorization of lignocellulosic biomass towards energy generation. Catalysts, 11(3), Article 309. https://doi.org/10.3390/catal11030309

Jiang, K., Kuang, H., Qin, T., Song, M., Zhou, J., Yang, P., Zhuang, W., Ying, H., & Wu, J. (2018). Recovery of monosaccharides from dilute acid corncob hydrolysate by nanofiltration: Modeling and optimization. RSC Advances, 8(23), 12672–12683. https://doi.org/10.1039/C8RA00236C

Jiang, N., Qi, W., Huang, R., Wang, M., Su, R., & He, Z. (2014). Production enhancement of 5‐hydroxymethyl furfural from fructose via mechanical stirring control and high fructose solution addition. Journal of Chemical Technology and Biotechnology, 89(1), 56–64. https://doi.org/10.1002/jctb.4096

Jing, Q., & Lü, X. (2007). Kinetics of non-catalyzed decomposition of D-xylose in high temperature liquid water. Chinese Journal of Chemical Engineering, 15(5), 666–669. https://doi.org/10.1016/S1004-9541(07)60143-8

Kamm, B., Gerhardt, M., & Dautzenberg, G. (2013). Catalytic processes of lignocellulosic feedstock conversion for production of furfural, levulinic acid, and formic acid-based fuel components. In S. L. Suib (Ed.), New and future developments in catalysis (pp. 91–113). Elsevier. https://doi.org/10.1016/B978-0-444-53878-9.00005-9

Kim, J.-H., Cho, S.-M., Choi, J.-H., Jeong, H., Lee, S. M., Koo, B., & Choi, I.-G. (2021). A simultaneous conversion and extraction of furfural from pentose in dilute acid hydrolysate of Quercus mongolica using an aqueous biphasic system. Applied Sciences, 11(1), Article 163. https://doi.org/10.3390/app11010163

Kunkes, E. L., Simonetti, D. A., West, R. M., Serrano-Ruiz, J. C., Gärtner, C. A., & Dumesic, J. A. (2008). Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes. Science, 322(5900), 417–421. https://doi.org/10.1126/science.1159210

Lamminpää, K., Ahola, J., & Tanskanen, J. (2012). Kinetics of xylose dehydration into furfural in formic acid. Industrial & Engineering Chemistry Research, 51(18), 6297–6303. https://doi.org/10.1021/ie2018367

Lee, C. B. T. L., & Wu, T. Y. (2021). A review on solvent systems for furfural production from lignocellulosic biomass. Renewable and Sustainable Energy Reviews, 137, Article 110172. https://doi.org/10.1016/j.rser.2020.110172

Lessard, J., Morin, J.-F., Wehrung, J.-F., Magnin, D., & Chornet, E. (2010). High yield conversion of residual pentoses into furfural via zeolite catalysis and catalytic hydrogenation of furfural to 2-methylfuran. Topics in Catalysis, 53(15–18), 1231–1234. https://doi.org/10.1007/s11244-010-9568-7

Li, C., Ding, D., Xia, Q., Liu, X., & Wang, Y., (2016). Conversion of raw lignocellulosic biomass into branched long-chain alkanes through three tandem steps. ChemSusChem, 9(13), 1712–1718. https://doi.org/10.1002/cssc.201600386

Li, H., Deng, A., Ren, J., Liu, C., Wang, W., Peng, F., & Sun, R., (2014). A modified biphasic system for the dehydration of D-xylose into furfural using SO₄²⁻/TiO₂-ZrO₂/La³⁺ as a solid catalyst. Catalysis Today, 234, 251–256. https://doi.org/10.1016/j.cattod.2013.12.043

Li, X.-L., Pan, T., Deng, J., Fu, Y., & Xu, H.-J. (2015). Catalytic dehydration of D-xylose to furfural over a tantalum-based catalyst in batch and continuous process. RSC Advances, 5(86), 70139–70146. https://doi.org/10.1039/C5RA11411J

Lima, S., Pillinger, M., & Valente, A. A. (2008). Dehydration of D-xylose into furfural catalysed by solid acids derived from the layered zeolite Nu-6(1). Catalysis Communications, 9(11–12), 2144–2148. https://doi.org/10.1016/j.catcom.2008.04.016

Lin, L., Ma, S., Li, P., Zhu, T., & Chang, H. (2015). Mutual solubilities for the water–2- sec -butylphenol system and partition coefficients for furfural and formic acid in the water–2-sec-butylphenol system. Journal of Chemical & Engineering Data, 60(6), 1926–1933. https://doi.org/10.1021/acs.jced.5b00170

Liu, C., Wei, L., Yin, X., Pan, X., Hu, J., Li, N., Xu, J., Jiang, J., & Wang, K. (2021). Synthesis of furfural from xylan in γ-valerolactone/molten salt hydrate biphasic system. Chemical Engineering Journal, 425, Article 130608. https://doi.org/10.1016/j.cej.2021.130608

Liu, H., Hu, H., Jahan, M. S., & Ni, Y. (2013). Furfural formation from the pre-hydrolysis liquor of a hardwood kraft-based dissolving pulp production process. Bioresource Technology, 131, 315–320. https://doi.org/10.1016/j.biortech.2012.12.158

Luo, Y., Li, Z., Li, X., Liu, X., Fan, J., Clark, J. H., & Hu, C. (2019). The production of furfural directly from hemicellulose in lignocellulosic biomass: A review. Catalysis Today, 319, 14–24. https://doi.org/10.1016/j.cattod.2018.06.042

Luo, Y., Li, Z., Zuo, Y., Su, Z., & Hu, C. (2017). A simple two-step method for the selective conversion of hemicellulose in Pubescens to furfural. ACS Sustainable Chemistry & Engineering, 5(9), 8137–8147. https://doi.org/10.1021/acssuschemeng.7b01766

Ma, S., Li, P., Zhu, T., Chang, H., & Lin, L. (2014). Reaction extraction of furfural from pentose solutions in a modified Scheibel column. Chemical Engineering and Processing: Process Intensification, 83, 71–78. https://doi.org/10.1016/j.cep.2014.07.008

Machado, G., Leon, S., Santos, F., Lourega, R., Dullius, J., Mollmann, M. E., & Eichler, P. (2016). Literature review on furfural production from lignocellulosic biomass. Natural Resources, 7(3), 115–129. https://doi.org/10.4236/nr.2016.73012

Magalhães, F. F., Tavares, A. P. M., & Freire, M. G. (2021). Advances in aqueous biphasic systems for biotechnology applications. Current Opinion in Green and Sustainable Chemistry, 27, Article 100417. https://doi.org/10.1016/j.cogsc.2020.100417

Männistö, M., Pokki, J.-P., Fournis, L., & Alopaeus, V. (2017). Ternary and binary LLE measurements for solvent (2-methyltetrahydrofuran and cyclopentyl methyl ether)+furfural+water between 298 and 343K. The Journal of Chemical Thermodynamics, 110, 127–136. https://doi.org/10.1016/j.jct.2017.02.016

Mansilla, H. D., Baeza, J., Urzúa, S., Maturana, G., Villaseñor, J., & Durán, N. (1998). Acid-catalysed hydrolysis of rice hull: Evaluation of furfural production. Bioresource Technology, 66(3), 189–193. https://doi.org/10.1016/S0960-8524(98)00088-1

Mansur, M. B., Slater, M. J., & Biscaia Junior, E. C. (2003). Reactive extraction of zinc sulfate with bis(2-ethylhexyl) phosphoric acid in a short Kühni column used in batch mode. Industrial & Engineering Chemistry Research, 42(17), 4068–4076. https://doi.org/10.1021/ie020883y

Mao, H., Li, S.-H., Zhang, A.-S., Xu, L.-H., Lu, H.-X., Lv, J., & Zhao, Z.-P. (2021). Furfural separation from aqueous solution by pervaporation membrane mixed with metal organic framework MIL-53(Al) synthesized via high efficiency solvent-controlled microwave. Separation and Purification Technology, 272, Article 118813. https://doi.org/10.1016/j.seppur.2021.118813

Mariscal, R., Maireles-Torres, P., Ojeda, M., Sádaba, I., & López Granados, M. (2016). Furfural : A renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy & Environmental Science, 9(4), 1144–1189. https://doi.org/10.1039/C5EE02666K

Matsagar, B. M., Hossain, S. A., Islam, T., Alamri, H. R., Alothman, Z. A., Yamauchi, Y., Dhepe, P. L., & Wu, K. C.-W. (2017). Direct production of furfural in one-pot fashion from raw biomass using Brønsted acidic ionic liquids. Scientific Reports, 7, Article 13508. https://doi.org/10.1038/s41598-017-13946-4

Matsagar, B. M., Munshi, M. K., Kelkar, A. A., & Dhepe, P. L. (2015). Conversion of concentrated sugar solutions into 5-hydroxymethyl furfural and furfural using Brönsted acidic ionic liquids. Catalysis Science & Technology, 5(12), 5086–5090. https://doi.org/10.1039/C5CY00858A

Mittal, A., Black, S. K., Vinzant, T. B., O’Brien, M., Tucker, M. P., & Johnson, D. K., (2017). Production of furfural from process-relevant biomass-derived pentoses in a biphasic reaction system. ACS Sustainable Chemistry & Engineering, 5(7), 5694–5701. https://doi.org/10.1021/acssuschemeng.7b00215

Morais, E. S., Schaeffer, N., Freire, M. G., Freire, C. S. R., Coutinho, J. A. P., & Silvestre, A. J. D. (2021). Integrated production and separation of furfural using an acidic-based aqueous biphasic system. ACS Sustainable Chemistry & Engineering, 9(36), 12205–12212. https://doi.org/10.1021/acssuschemeng.1c03733

Namhaed, K., Kiatkittipong, W., Triquet, T., & Cognet, P. (2024a) Dehydration of pentose to furfural catalyzed by formic acid – kinetics and application to real biomass hydrolysates. Journal of Environmental Chemical Engineering, 12(5), Article 113431. https://doi.org/10.1016/j.jece.2024.113431

Namhaed, K., Pérès, Y., Kiatkittipong, W., Triquet, T., Camy, S., & Cognet, P. (2024b) Integrated supercritical carbon dioxide extraction for efficient furfural production from xylose using formic acid as a catalyst. The Journal of Supercritical Fluids, 210, Article 106274. https://doi.org/10.1016/j.supflu.2024.106274

Namhaed, K., Triquet, T., Cognet, P., Darmawan, M. A., Muryanto, M., & Gozan, M. (2025). Formic acid as a catalyst in furfural production by simultaneous extraction processes via steam stripping and biphasic systems. Chemical Engineering Research and Design, 218, 388–399. https://doi.org/10.1016/j.cherd.2025.04.047

Nhien, L. C., Long, N. V. D., & Lee, M. (2021). Novel hybrid reactive distillation with extraction and distillation processes for furfural production from an actual xylose solution. Energies, 14(4), Article 1152. https://doi.org/10.3390/en14041152

Papaioannou, M., Kleijwegt, R. J. T., van der Schaaf, J., & Neira d’Angelo, M. F. (2019). Furfural production by continuous reactive extraction in a millireactor under the Taylor flow regime. Industrial & Engineering Chemistry Research, 58(35), 16106–16115. https://doi.org/10.1021/acs.iecr.9b00604

Peleteiro, S., da Costa Lopes, A. M., Garrote, G., Parajó, J. C., & Bogel-Łukasik, R. (2015). Simple and efficient furfural production from xylose in media containing 1-butyl-3-methylimidazolium hydrogen sulfate. Industrial & Engineering Chemistry Research, 54(3), 8368–8373. https://doi.org/10.1021/acs.iecr.5b01771

Peleteiro, S., Santos, V., Garrote, G., & Parajó, J. C. (2016). Furfural production from Eucalyptus wood using an acidic ionic liquid. Carbohydrate Polymers, 146, 20–25. https://doi.org/10.1016/j.carbpol.2016.03.049

Qing, Q., Guo, Q., Zhou, L., Wan, Y., Xu, Y., Ji, H., Gao, X., & Zhang, Y. (2017). Catalytic conversion of corncob and corncob pretreatment hydrolysate to furfural in a biphasic system with addition of sodium chloride. Bioresource Technology, 226, 247–254. https://doi.org/10.1016/j.bior-tech.2016.11.118

Romo, J. E., Bollar, N. V., Zimmermann, C. J., & Wettstein, S. G. (2018). Conversion of sugars and biomass to furans using heterogeneous catalysts in biphasic solvent systems. ChemCatChem, 10(21), 4805–4816. https://doi.org/10.1002/cctc.201800926

Rong, C., Ding, X., Zhu, Y., Li, Y., Wang, L., Qu, Y., Ma, X., & Wang, Z. (2012). Production of furfural from xylose at atmospheric pressure by dilute sulfuric acid and inorganic salts. Carbohydrate Research, 350, 77–80. https://doi.org/10.1016/j.carres.2011.11.023

Sadhukhan, J., Ng, K. S., & Hernandez, E. M. (2014). Biorefineries and chemical processes: Design, integration and sustainability analysis. Wiley.

Sahu, R., & Dhepe, P. L. (2012). A one-pot method for the selective conversion of hemicellulose from crop waste into C5 sugars and furfural by using solid acid catalysts. ChemSusChem, 5(4), 751–761. https://doi.org/10.1002/cssc.201100448

Sako, T., Taguchi, T., Sugeta, T., Nakazawa, N., Okubo, T., Hiaki, T., & Sato, M. (1992). Kinetic study of furfural formation accompanying supercritical carbon dioxide extraction. Journal of Chemical Engineering of Japan, 25(4), 372–377. https://doi.org/10.1252/jcej.25.372

Sangarunlert, W., Piumsomboon, P., & Ngamprasertsith, S. (2007). Furfural production by acid hydrolysis and supercritical carbon dioxide extraction from rice husk. Korean Journal of Chemical Engineering, 24(6), 936–941. https://doi.org/10.1007/s11814-007-0101-z

Sener, C., Motagamwala, A. H., Alonso, D. M., & Dumesic, J. A. (2018). Enhanced furfural yields from xylose dehydration in the γ‐valerolactone/water solvent system at elevated temperatures. ChemSusChem, 11(14), 2321–2331. https://doi.org/10.1002/cssc.201800730

Sun, K., Shao, Y., Liu, P., Zhang, L., Gao, G., Dong, D., Zhang, S., Hu, G., Xu, L., & Hu, X. (2021). A solid iron salt catalyst for selective conversion of biomass-derived C5 sugars to furfural. Fuel, 300, Article 120990. https://doi.org/10.1016/j.fuel.2021.120990

Vispute, T. P., Zhang, H., Sanna, A., Xiao, R., & Huber, G. W. (2010). Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils. Science, 330(6008), 1222–1227. https://doi.org/10.1126/science.1194218

Wang, Q., Qi, W., Wang, W., Zhang, Y., Leksawasdi, N., Zhuang, X., Yu, Q., & Yuan, Z. (2019a). Production of furfural with high yields from corncob under extremely low water/solid ratios. Renewable Energy, 144, 139–146. https://doi.org/10.1016/j.renene.2018.07.095

Wang, Q., Zhuang, X., Wang, W., Tan, X., Yu, Q., Qi, W., & Yuan, Z. (2018). Rapid and simultaneous production of furfural and cellulose-rich residue from sugarcane bagasse using a pressurized phosphoric acid-acetone-water system. Chemical Engineering Journal, 334, 698–706. https://doi.org/10.1016/j.cej.2017.10.089

Wang, W., Ren, J., Li, H., Deng, A., & Sun, R. (2015). Direct transformation of xylan-type hemicelluloses to furfural via SnCl4 catalysts in aqueous and biphasic systems. Bioresource Technology, 183, 188–194. https://doi.org/10.1016/j.biortech.2015.02.068

Wang, X., Li, H., Lin, Q., Li, R., Li, W., Wang, X., Peng, F., & Ren, J. (2019b). Efficient catalytic conversion of dilute-oxalic acid pretreated bagasse hydrolysate to furfural using recyclable ironic phosphates catalysts. Bioresource Technology, 290, Article 121764. https://doi.org/10.1016/j.biortech.2019.121764

Wang, Y., Dai, Y., Wang, T., Li, M., Zhu, Y., & Zhang, L. (2022). Efficient conversion of xylose to furfural over modified zeolite in the recyclable water/n-butanol system. Fuel Processing Technology, 237, Article 107472. https://doi.org/10.1016/j.fuproc.2022.107472

Weingarten, R., Cho, J., Conner, W. C., Jr., & Huber, G. W. (2010). Kinetics of furfural production by dehydration of xylose in a biphasic reactor with microwave heating. Green Chemistry, 12(8), 1423–1429. https://doi.org/10.1039/c003459b

Win, D. T. (2005). Furfural-gold from garbage. AU Journal of Technology, 8(4), 185–190.

Xing, R., Qi, W., & Huber, G. W. (2011). Production of furfural and carboxylic acids from waste aqueous hemicellulose solutions from the pulp and paper and cellulosic ethanol industries. Energy & Environmental Science, 4(6), 2193–2205. https://doi.org/10.1039/c1ee01022k

Yan, K., Wu, G., Lafleur, T., & Jarvis, C. (2014). Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals. Renewable and Sustainable Energy Reviews, 38, 663–676. https://doi.org/10.1016/j.rser.2014.07.003

Yang, T., Zhou, Y.-H., Zhu, S.-Z., Pan, H., & Huang, Y.-B. (2017). Insight into aluminum sulfate-catalyzed xylan conversion into furfural in a γ-valerolactone/water biphasic solvent under microwave conditions. ChemSusChem, 10(20), 4066–4079. https://doi.org/10.1002/cssc.201701290

Yang, W., Li, P., Bo, D., & Chang, H. (2012a). The optimization of formic acid hydrolysis of xylose in furfural production. Carbohydrate Research, 357, 53–61. https://doi.org/10.1016/j.carres.2012.05.020

Yang, W., Li, P., Bo, D., Chang, H., Wang, X., & Zhu, T. (2013). Optimization of furfural production from D-xylose with formic acid as catalyst in a reactive extraction system. Bioresource Technology, 133, 361–369. https://doi.org/10.1016/j.biortech.2013.01.127

Yang, Y., Hu, C., & Abu-Omar, M. M. (2012b). Conversion of carbohydrates and lignocellulosic biomass into 5-hydroxymethylfurfural using AlCl3·6H2O catalyst in a biphasic solvent system. Green Chemistry, 14(2), 509–513. https://doi.org/10.1039/C1GC15972K

Ye, L., Han, Y., Wang, X., Lu, X., Qi, X., & Yu, H. (2021). Recent progress in furfural production from hemicellulose and its derivatives: Conversion mechanism, catalytic system, solvent selection. Molecular Catalysis, 515, Article 111899. https://doi.org/10.1016/j.mcat.2021.111899

Yi, J., He, T., Jiang, Z., Li, J., & Hu, C. (2013). AlCl3 catalyzed conversion of hemicellulose in corn stover. Chinese Journal of Catalysis, 34(11), 2146–2152. https://doi.org/10.1016/S1872-2067(12)60718-9

Yong, K. J., Wu, T. Y., Lee, C. B. T. L., Lee, Z. J., Liu, Q., Jahim, J. M., Zhou, Q., & Zhang, L. (2022). Furfural production from biomass residues: Current technologies, challenges and future prospects. Biomass and Bioenergy, 161, Article 106458. https://doi.org/10.1016/j.biombioe.2022.106458

Yong, T. L.-K., Mohamad, N., & Yusof, N. N. M. (2016). Furfural production from oil palm biomass using a biomass-derived supercritical ethanol solvent and formic acid catalyst. Procedia Engineering, 148, 392–400. https://doi.org/10.1016/j.proeng.2016.06.495

Yoo, C. G., Zhang, S., & Pan, X. (2017). Effective conversion of biomass into bromomethylfurfural, furfural, and depolymerized lignin in lithium bromide molten salt hydrate of a biphasic system. RSC Advances, 7(1), 300–308. https://doi.org/10.1039/C6RA25025D

Yousuf, A., Pirozzi, D., & Sannino, F. (2020). Fundamentals of lignocellulosic biomass. In A. Yousuf, D. Pirozzi, & F. Sannino (Eds.), Lignocellulosic biomass to liquid biofuels (pp. 1–15). Academic Press. https://doi.org/10.1016/B978-0-12-815936-1.00001-0

Zang, G., Shah, A., & Wan, C. (2020). Techno-economic analysis of an integrated biorefinery strategy based on one-pot biomass fractionation and furfural production. Journal of Cleaner Production, 260, Article 120837. https://doi.org/10.1016/j.jclepro.2020.120837

Zeitsch, K. J. (2000). The chemistry and technology of furfural and its many by-products. Elsevier Science.

Zhang, L., He, Y., Zhu, Y., Liu, Y., & Wang, X. (2018). Camellia oleifera shell as an alternative feedstock for furfural production using a high surface acidity solid acid catalyst. Bioresource Technology, 249, 536–541. https://doi.org/10.1016/j.biortech.2017.10.061

Zhang, Q., Guo, Z., Zeng, X., Ramarao, B., & Xu, F. (2021). A sustainable biorefinery strategy: Conversion and fractionation in a facile biphasic system towards integrated lignocellulose valorizations. Renewable Energy, 179, 351–358. https://doi.org/10.1016/j.renene.2021.07.031

Zhang, T., Kumar, R., & Wyman, C. E. (2013). Enhanced yields of furfural and other products by simultaneous solvent extraction during thermochemical treatment of cellulosic biomass. RSC Advances, 3(25), 9809–9819. https://doi.org/10.1039/c3ra41857j

Zhang, Y., Chen, M., Wang, J., & Hu, Q. (2014). Synthesis of furfural from D-xylose and corncob with chromium chloride as catalyst in biphasic system. Asian Journal of Chemistry, 26(6), 1717–1720. https://doi.org/10.14233/ajchem.2014.17333

Zhao, Y., Lu, K., Xu, H., Zhu, L., & Wang, S. (2021). A critical review of recent advances in the production of furfural and 5-hydroxymethylfurfural from lignocellulosic biomass through homogeneous catalytic hydrothermal conversion. Renewable and Sustainable Energy Reviews, 139, Article 110706. https://doi.org/10.1016/j.rser.2021.110706

Zhao, Y., Xu, H., Lu, K., Qu, Y., Zhu, L., & Wang, S. (2019a). Dehydration of xylose to furfural in butanone catalyzed by Brønsted‐Lewis acidic ionic liquids. Energy Science & Engineering, 7(5), 2237–2246. https://doi.org/10.1002/ese3.444

Zhao, Y., Xu, H., Lu, K., Qu, Y., Zhu, L., & Wang, S. (2019b). Experimental and kinetic study of arabinose conversion to furfural in renewable butanone–water solvent mixture catalyzed by Lewis acidic ionic liquid catalyst. Industrial & Engineering Chemistry Research, 58(36), 17088–17097. https://doi.org/10.1021/acs.iecr.9b03420

Zuo, M., Le, K., Li, Z., Jiang, Y., Zeng, X., Tang, X., Sun, Y., & Lin, L. (2017). Green process for production of 5-hydroxymethylfurfural from carbohydrates with high purity in deep eutectic solvents. Industrial Crops and Products, 99, 1–6. https://doi.org/10.1016/j.indcrop.2017.01.027