Fabrication of nitrogen and sulfur co-doped carbon dots for antioxidant applications
Main Article Content
Abstract
Carbon dots (CDs) have attracted attention because of their unique optical properties, biocompatibility, and ease of synthesis. Recently, CDs have demonstrated significant antioxidant activity due to their high surface functionalization, which enables them to effectively interact with reactive oxygen species (ROS) and free radicals. In this study, we aimed to synthesize nitrogen and sulfur co-doped carbon dots (NS-CDs) using a microwave-assisted pyrolysis method, incorporating varying concentrations of nitrogen and sulfur. The particle size, polydispersity index (PDI), zeta potential, and antioxidant activity were evaluated. The optimal formulation, 20-NS-CDs, was further assessed for total phenolic content and intracellular ROS. Finally, biocompatibility was evaluated using an MTT assay. The results revealed that the 20-NS-CDs had a particle size of 4.35 ± 1.84 nm and demonstrated the highest antioxidant activity, as indicated by the lowest half-maximal inhibitory concentration (IC₅₀) value of approximately 0.96 ± 0.03 mg/mL. The total phenolic content was 21.1 ± 1.27 mg of gallic acid equivalent per gram (mg GAE/g), consistent with previous studies, and the antioxidant activity was confirmed by a reduction in intracellular fluorescence in a dose-dependent manner. Therefore, the ability of 20-NS-CDs to scavenge free radicals holds significant potential for applications in health and environmental sciences.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Abbasi, R., Shineh, G., Mobaraki, M., Doughty, S., & Tayebi, L. (2023). Structural parameters of nanoparticles affecting their toxicity for biomedical applications: A review. Journal of Nanoparticle Research, 25(3), Article 43. https://doi.org/10.1007/s11051-023-05690-w
Afonso, I. S., Cardoso, B., Nobrega, G., Minas, G., Ribeiro, J. E., & Lima, R. A. (2024). Green synthesis of nanoparticles from olive oil waste for environmental and health applications: A review. Journal of Environmental Chemical Engineering, 12(5), Article 114022. https://doi.org/10.1016/j.jece.2024.114022
Ahmed, S. F., Mofijur, M., Rafa, N., Chowdhury, A. T., Chowdhury, S., Nahrin, M., Islam, A. B. M. S., & Ong, H. C. (2022). Green approaches in synthesising nanomaterials for environmental nanobioremediation: Technological advancements, applications, benefits and challenges. Environmental Research, 204, Article 111967. https://doi.org/10.1016/j.envres.2021.111967
Altammar, K. A. (2023). A review on nanoparticles: Characteristics, synthesis, applications, and challenges. Frontiers in Microbiology, 14, Article 1155622. https://doi.org/10.3389/fmicb.2023.1155622
Brglez Mojzer, E., Knez Hrnčič, M., Škerget, M., Knez, Ž., & Bren, U. (2016). Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules, 21(7), Article 901. https://doi.org/10.3390/molecules21070901
Chen, Y., Qin, X., Yuan, C., & Wang, Y. (2020). Switch on fluorescence mode for determination of L-cysteine with carbon quantum dots and Au nanoparticles as a probe. RSC Advances, 10(4), 1989–1994. https://doi.org/10.1039/C9RA09019C
Cui, L., Ren, X., Sun, M., Liu, H., & Xia, L. (2021). Carbon dots: Synthesis, properties and applications. Nanomaterials, 11(12), Article 3419. https://doi.org/10.3390/nano11123419
Dechsri, K., Suwanchawalit, C., Apirakaramwong, A., Patrojanasophon, P., Rojanarata, T., Opanasopit, P., Pengnam, S., & Charoenying, T. (2024a). Photo-sensitive antibacterial activity of o-phenylenediamine carbon dots. Journal of Current Science and Technology, 14(2), Article 36. https://doi.org/10.59796/jcst.V14N2.2024.36
Dechsri, K., Suwanchawalit, C., Patrojanasophon, P., Opanasopit, P., Pengnam, S., Charoenying, T., & Taesotikul, T. (2024b). Photodynamic antibacterial therapy of gallic acid-derived carbon-based nanoparticles (GACNPs): Synthesis, characterization, and hydrogel formulation. Pharmaceutics, 16(2), Article 254. https://doi.org/10.3390/pharmaceutics16020254
Dechsri, K., Suwanchawalit, C., Pengnam, S., Pornpitchanarong, C., Opanasopit, P., & Apirakaramwong, A. (2024c). Antioxidant activity of gallic acid carbon-based nanomaterials. Science, Engineering and Health Studies, 18, Article 24050019. https://doi.org/10.69598/sehs.18.24050019
Ding, H., Wei, J.-S., & Xiong, H.-M. (2014). Nitrogen and sulfur co-doped carbon dots with strong blue luminescence. Nanoscale, 6(22), 13817–13823. https://doi.org/10.1039/C4NR04267K
Ehtesabi, H., & Massah, F. (2021). Improvement of hydrophilicity and cell attachment of polycaprolactone scaffolds using green synthesized carbon dots. Materials Today Sustainability, 13, Article 100075. https://doi.org/10.1016/j.mtsust.2021.100075
Fallah, S., Yusefi-Tanha, E., & Peralta-Videa, J. R. (2024). Interaction of nanoparticles and reactive oxygen species and their impact on macromolecules and plant production. Plant Nano Biology, 10, Article 100105. https://doi.org/10.1016/j.plana.2024.100105
Fusco, D., Colloca, G., Lo Monaco, M. R., & Cesari, M. (2007). Effects of antioxidant supplementation on the aging process. Clinical Interventions in Aging, 2(3), 377–387.
Gao, H., Pang, Y., Li, L., Zhu, C., Ma, C., Gu, J., Wu, Y., & Chen, G. (2020). One-step synthesis of the nitrogen and sulfur codoped carbon dots for detection of lead and copper ions in aqueous solution. Journal of Sensors, 2020(1), Article 8828456. https://doi.org/10.1155/2020/8828456
Gedda, G., Sankaranarayanan, S. A., Putta, C. L., Gudimella, K. K., Rengan, A. K., & Girma, W. M. (2023). Green synthesis of multi-functional carbon dots from medicinal plant leaves for antimicrobial, antioxidant, and bioimaging applications. Scientific Reports, 13(1), Article 6371. https://doi.org/10.1038/s41598-023-33652-8
Gulcin, I. (2020). Antioxidants and antioxidant methods: An updated overview. Archives of Toxicology, 94(3), 651–715. https://doi.org/10.1007/s00204-020-02689-3
Hasan, M. T., Gonzalez‐Rodriguez, R., Ryan, C., Faerber, N., Coffer, J. L., & Naumov, A. V. (2018). Photo‐and electroluminescence from nitrogen‐doped and nitrogen–sulfur codoped graphene quantum dots. Advanced Functional Materials, 28(42), Article 1804337. https://doi.org/10.1002/adfm.201804337
Hu, Q., Paau, M. C., Zhang, Y., Gong, X., Zhang, L., Lu, D., Liu, Y., Liu, Q., Yao, J., & Choi, M. M. F. (2014). Green synthesis of fluorescent nitrogen/sulfur-doped carbon dots and investigation of their properties by HPLC coupled with mass spectrometry. RSC Advances, 4(35), 18065–18073. https://doi.org/10.1039/C4RA02170C
Huang, S.-W., Lin, Y.-F., Li, Y.-X., Hu, C.-C., & Chiu, T.-C. (2019). Synthesis of fluorescent carbon dots as selective and sensitive probes for cupric ions and cell imaging. Molecules, 24(9), Article 1785. https://doi.org/10.3390/molecules24091785
Huang, Z., & Ren, L. (2025). Large scale synthesis of carbon dots and their applications: A review. Molecules, 30(4), Article 774. https://doi.org/10.3390/molecules30040774
Ibrayev, N., Dzhanabekova, R., Seliverstova, E., & Amanzholova, G. (2022). Optical properties of N- and S-doped carbon dots based on citric acid and L-cysteine. Fullerenes, Nanotubes and Carbon Nanostructures, 30(1), 22–26. https://doi.org/10.1080/1536383X.2021.1999933
Innocenzi, P., & Stagi, L. (2023). Carbon dots as oxidant-antioxidant nanomaterials, understanding the structure-properties relationship. A critical review. Nano Today, 50, Article 101837. https://doi.org/10.1016/j.nantod.2023.101837
Ji, Z., Sheardy, A., Zeng, Z., Zhang, W., Chevva, H., Allado, K., Yin, Z., & Wei, J. (2019). Tuning the functional groups on carbon nanodots and antioxidant studies. Molecules, 24(1), Article 152. https://doi.org/10.339/molecules24010152
Johny, A., da Silva, L. P., Pereira, C. M., & da Silva, J. C. G. E. (2024). Sustainability assessment of highly fluorescent carbon dots derived from eucalyptus leaves. Environments, 11(1), Article 6. https://doi.org/10.3390/environments11010006
Kalogerakou, T., & Antoniadou, M. (2024). The role of dietary antioxidants, food supplements and functional foods for energy enhancement in healthcare professionals. Antioxidants (Basel), 13(12), Article 1508. https://doi.org/10.3390/antiox13121508
Karnwal, A., Jassim, A. Y., Mohammed, A. A., Sharma, V., Al-Tawaha, A. R. M. S., & Sivanesan, I. (2024). Nanotechnology for healthcare: Plant-derived nanoparticles in disease treatment and regenerative medicine. Pharmaceuticals, 17(12), Article 1711. https://doi.org/10.3390/ph17121711
Kasif, M., Alarifi, A., Afzal, M., & Thirugnanasambandam, A. (2024). N, S-codoped carbon dots for antioxidants and their nanovehicle potential as molecular cargoes. RSC Advances, 14(44), 32041–32052. https://doi.org/10.1039/d4ra05994h
Kumar, A., Kuang, Y., Liang, Z., & Sun, X. (2020). Microwave chemistry, recent advancements, and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: A review. Materials Today Nano, 11, Article 100076. https://doi.org/10.1016/j.mtnano.2020.100076
Li, L., Yu, B., & You, T. (2015). Nitrogen and sulfur co-doped carbon dots for highly selective and sensitive detection of Hg (II) ions. Biosensors and Bioelectronics, 74, 263–269. https://doi.org/10.1016/j.bios.2015.06.050
Lin, H., Huang, J., & Ding, L. (2019). Preparation of carbon dots with high-fluorescence quantum yield and their application in dopamine fluorescence probe and cellular imaging. Journal of Nanomaterials, 2019(1), Article 5037243. https://doi.org/10.1155/2019/5037243
Liu, J., Li, R., & Yang, B. (2020). Carbon dots: A new type of carbon-based nanomaterial with wide applications. ACS Central Science, 6(12), 2179–2195. https://doi.org/10.1021/acscentsci.0c01306
Liu, M. (2020). Optical properties of carbon dots: A review. Nanoarchitectonics, 1(1), 1–12. https://doi.org/10.37256/nat.112020124.1-12
Lobo, V., Patil, A., Phatak, A., & Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Reviews, 4(8), 118–126. https://doi.org/10.4103/0973-7847.70902
Lozano Pérez, A. S., Lozada Castro, J. J., & Guerrero Fajardo, C. A. (2024). Application of microwave energy to biomass: A comprehensive review of microwave-assisted technologies, optimization parameters, and the strengths and weaknesses. Journal of Manufacturing and Materials Processing, 8(3), Article 121. https://doi.org/10.3390/jmmp8030121
Lu, H., Li, C., Wang, H., Wang, X., & Xu, S. (2019). Biomass-derived sulfur, nitrogen co-doped carbon dots for colorimetric and fluorescent dual mode detection of silver (I) and cell imaging. ACS Omega, 4(25), 21500–21508. https://doi.org/10.1021/acsomega.9b03198
Magesh, V., Sundramoorthy, A. K., & Ganapathy, D. (2022). Recent advances on synthesis and potential applications of carbon quantum dots. Frontiers in Materials, 9, Article 906838. https://doi.org/10.3389/fmats.2022.906838
Martemucci, G., Costagliola, C., Mariano, M., D’andrea, L., Napolitano, P., & D’Alessandro, A. G. (2022). Free radical properties, source and targets, antioxidant consumption and health. Oxygen, 2(2), 48–78. https://doi.org/10.3390/oxygen2020006
Moammeri, A., Chegeni, M. M., Sahrayi, H., Ghafelehbashi, R., Memarzadeh, F., Mansouri, A., Akbarzadeh, I., Abtahi, M. S., Hejabi, F., & Ren, Q. (2023). Current advances in niosomes applications for drug delivery and cancer treatment. Materials Today Bio, 23, Article 100837. https://doi.org/10.1016/j.mtbio.2023.100837
Molole, G. J., Gure, A., & Abdissa, N. (2022). Determination of total phenolic content and antioxidant activity of Commiphora mollis (Oliv.) Engl. resin. BMC Chemistry, 16(1), Article 48. https://doi.org/10.1186/s13065-022-00841-x
Ngoc, L. T. N., Moon, J.-Y., & Lee, Y.-C. (2023). Plant extract-derived carbon dots as cosmetic ingredients. Nanomaterials, 13(19), Article 2654. https://doi.org/10.3390/nano13192654
Ozyurt, D., Kobaisi, M. A., Hocking, R. K., & Fox, B. (2023). Properties, synthesis, and applications of carbon dots: A review. Carbon Trends, 12, Article 100276. https://doi.org/10.1016/j.cartre.2023.100276
Pal, A., Sk, M. P., & Chattopadhyay, A. (2020). Recent advances in crystalline carbon dots for superior application potential. Materials Advances, 1(4), 525–553. https://doi.org/10.1039/d0ma00108b
Qureshi, Z. A., Dabash, H., Ponnamma, D., & Abbas, M. K. G. (2024). Carbon dots as versatile nanomaterials in sensing and imaging: Efficiency and beyond. Heliyon, 10(11), Article e31634. https://doi.org/10.1016/j.heliyon.2024.e31634
Ren, J., Malfatti, L., & Innocenzi, P. (2021). Citric acid derived carbon dots, the challenge of understanding the synthesis-structure relationship. Journal of Carbon Research, 7(1), Article 2. https://doi.org/10.3390/c7010002
Romero, M. P., Alves, F., Stringasci, M. D., Buzza, H. H., Ciol, H., Inada, N. M., & Bagnato, V. S. (2021). One-pot microwave-assisted synthesis of carbon dots and in vivo and in vitro antimicrobial photodynamic applications. Frontiers in Microbiology, 12, Article 662149. https://doi.org/10.3389/fmicb.2021.662149
Sadowska-Bartosz, I., & Bartosz, G. (2014). Effect of antioxidants supplementation on aging and longevity. BioMed Research International, 2014(1), Article 404680. https://doi.org/10.1155/2014/404680
Samrot, A. V., Ram Singh, S. P., Deenadhayalan, R., Rajesh, V. V., Padmanaban, S., & Radhakrishnan, K. (2022). Nanoparticles, a double-edged sword with oxidant as well as antioxidant properties—A review. Oxygen, 2(4), 591–604. https://doi.org/10.3390/oxygen2040039
Sandhir, R., Yadav, A., Sunkaria, A., & Singhal, N. (2015). Nano-antioxidants: An emerging strategy for intervention against neurodegenerative conditions. Neurochemistry International, 89, 209–226. https://doi.org/10.1016/j.neuint.2015.08.011
Shahid, K., Alshareef, M., Ali, M., Yousaf, M. I., Alsowayigh, M. M., & Khan, I. A. (2023). Direct growth of nitrogen-doped carbon quantum dots on Co9S8 passivated on cotton fabric as an efficient photoelectrode for water treatment. ACS Omega, 8(44), 41064–41076. https://doi.org/10.1021/acsomega.3c03407
Sharma, N., Sharma, I., & Bera, M. K. (2022). Microwave-assisted green synthesis of carbon quantum dots derived from Calotropis gigantea as a fluorescent probe for bioimaging. Journal of Fluorescence, 32(3), 1039–1049. https://doi.org/10.1007/s10895-022-02923-4
Suner, S. S., Sahiner, M., Ayyala, R. S., Bhethanabotla, V. R., & Sahiner, N. (2021). Versatile fluorescent carbon dots from citric acid and cysteine with antimicrobial, anti-biofilm, antioxidant, and AChE enzyme inhibition capabilities. Journal of Fluorescence, 31(6), 1705–1717. https://doi.org/10.1007/s10895-021-02798-x
Swain, S., & Jena, A. K. (2025). Green synthesis of N,S-doped carbon dots from the giloy stem for fluorimetry detection of 4-nitrophenol, triple-mode detection of congo red, and antioxidant applications. ACS Omega, 10(6), 5874–5885. https://doi.org/10.1021/acsomega.4c09748
Thanayutsiri, T., Patrojanasophon, P., Opanasopit, P., Ngawhirunpat, T., Plianwong, S., & Rojanarata, T. (2020). Rapid synthesis of chitosan-capped gold nanoparticles for analytical application and facile recovery of gold from laboratory waste. Carbohydrate Polymers, 250, Article 116983. https://doi.org/10.1016/j.carbpol.2020.116983
Tian, X., Zeng, A., Liu, Z., Zheng, C., Wei, Y., Yang, P., Zhang, M., Yang, F., & Xie, F. (2020). Carbon quantum dots: In vitro and in vivo studies on biocompatibility and biointeractions for optical imaging. International Journal of Nanomedicine, 15, 6519–6529. https://doi.org/10.2147/IJN.S257645
Tumilaar, S. G., Hardianto, A., Dohi, H., & Kurnia, D. (2024). A comprehensive review of free radicals, oxidative stress, and antioxidants: Overview, clinical applications, global perspectives, future directions, and mechanisms of antioxidant activity of flavonoid compounds. Journal of Chemistry, 2024(1), Article 5594386. https://doi.org/10.1155/2024/5594386
Tungare, K., Bhori, M., Racherla, K. S., & Sawant, S. (2020). Synthesis, characterization and biocompatibility studies of carbon quantum dots from Phoenix dactylifera. 3 Biotech, 10(12), Article 540. https://doi.org/10.1007/s13205-020-02518-5
Umar, S., Farnandi, R., Salsabila, H., & Zaini, E. (2022). Multicomponent crystal of trimethoprim and citric acid: Solid state characterization and dissolution rate studies. Open Access Macedonian Journal of Medical Sciences, 10(A), 141–145. https://doi.org/10.3889/oamjms.2022.7920
Wang, C.-Y., Ndaha, N., Wu, R.-S., Liu, H.-Y., Lin, S.-W., Yang, K.-M., & Lin, H.-Y. (2023). An overview of the potential of food-based carbon dots for biomedical applications. International Journal of Molecular Sciences, 24(23), Article 16579. https://doi.org/10.3390/ijms242316579
Wang, D., Yan, Z., Ren, L., Jiang, Y., Zhou, K., Li, X., Cui, F., Li, T., & Li, J. (205). Carbon dots as new antioxidants: Synthesis, activity, mechanism and application in the food industry. Food Chemistry, 475, Article 143377. https://doi.org/10.1016/j.foodchem.2025.143377
Waseem Basha, Z., Muniraj, S., & Senthil Kumar, A. (2024). Neem biomass derived carbon quantum dots synthesized via one step ultrasonification method for ecofriendly methylene blue dye removal. Scientific Reports, 14(1), Article 9706. https://doi.org/10.1038/s41598-024-59483-9
Yalshetti, S., Thokchom, B., Bhavi, S. M., Singh, S. R., Patil, S. R., Harini, B. P., Sillanpää, M., Manjunatha, J. G., Srinath, B. S., & Yarajarla, R. B. (2024). Microwave-assisted synthesis, characterization and in vitro biomedical applications of Hibiscus rosa-sinensis Linn.-mediated carbon quantum dots. Scientific Reports, 14(1), Article 9915. https://doi.org/10.1038/s41598-024-60726-y
Zehiroglu, C., & Ozturk Sarikaya, S. B. (2019). The importance of antioxidants and place in today’s scientific and technological studies. Journal of Food Science and Technology, 56(11), 4757–4774. https://doi.org/10.1007/s13197-019-03952-x
Zhang, T., Ji, Q., Song, J., Li, H., Wang, X., Shi, H., Niu, M., Chu, T., Zhang, F., & Guo, Y. (2022). Preparation of nitrogen and sulfur co-doped fluorescent carbon dots from cellulose nanocrystals as a sensor for the detection of rutin. Molecules, 27(22). Article 8021. https://doi.org/10.3390/molecules27228021
Zhang, W., Chavez, J., Zeng, Z., Bloom, B., Sheardy, A., Ji, Z., Yin, Z., Waldeck, D. H., Jia, Z., & Wei, J. (2018). Antioxidant capacity of nitrogen and sulfur codoped carbon nanodots. ACS Applied Nano Materials, 1(6), 2699–2708. https://doi.org/10.1021/acsanm.8b00404
Zhang, Y., & He, J. (2015). Facile synthesis of S, N co-doped carbon dots and investigation of their photoluminescence properties. Physical Chemistry Chemical Physics, 17(31), 20154–20159. https://doi.org/10.1039/c5cp03498a
Zhou, H., Ren, Y., Li, Z., He, W., & Li, Z. (2022). Selective detection of Fe3+ by nitrogen–sulfur-doped carbon dots using thiourea and citric acid. Coatings, 12(8), Article 1042. https://doi.org/10.3390/coatings12081042