Box-Behnken design optimization of the spray-drying process for yield and antioxidant activity of Koklan remedy extract powder

Main Article Content

Nutsawadee Apichatwatana
Sudaporn Wongwan
Jira Jongcharoenkamol
Worawut Kriangkrai
Soravoot Rujivipat

Abstract

Koklan remedy is a traditional Thai herbal formulation used for the relief of muscle pain and inflammation. However, its decoction form presents limitations, including poor stability and low patient compliance. This study aimed to optimize the extraction and spray-drying conditions to convert Koklan remedy extract into a powder form with high yield and retained antioxidant activity. A Box-Behnken design was employed to investigate the effects of inlet temperature, feed rate, and decoction ratio on powder yield and ABTS radical scavenging activity. The results indicated that all three variables influenced the responses, with decoction ratio emerging as the most significant. The optimum condition for yield was found at  inlet temperature,  feed rate, and 3.71 decoction ratio. Validation experiments confirmed strong agreement in powder yield prediction but revealed some deviation in antioxidant activity due to model limitations. Overall, this study demonstrates the applicability of response surface methodology for optimizing herbal spray drying processes and supports the development of Koklan remedy powder as a more stable, scalable, and patient-friendly dosage form.

Downloads

Download data is not yet available.

Article Details

How to Cite
Apichatwatana, N., Wongwan, S., Jongcharoenkamol, J., Kriangkrai, W., & Rujivipat, S. (2025). Box-Behnken design optimization of the spray-drying process for yield and antioxidant activity of Koklan remedy extract powder. Science, Engineering and Health Studies, 19, 25050018. https://doi.org/10.69598/sehs.19.25050018
Section
Health sciences

References

Brimson, J. M., Prasanth, M. I., Malar, D. S., Brimson, S., & Tencomnao, T. (2020). Rhinacanthus nasutus “Tea” infusion and the medicinal benefits of the constituent phytochemicals. Nutrients, 12(12), Article 3776. https://doi.org/10.3390/nu12123776

Bukke, S., Raghu, P. S., Sailaja, G., & Kedam, T. R. (2011). The study on morphological, phytochemical and pharmacological aspects of Rhinacanthus nasutus. (L) Kurz (a review). Journal of Applied Pharmaceutical Science, 1(8), 26–32.

Bumrungchaichana, W., & Kamontham, T. (2020). Comparative analysis of extract and antioxidant activity of Kokran extracted by Thai traditional medicines procedures. The Golden Teak: Science and Technology Journal, 7(1), 97–106.

Gong, W. J., Zhang, Y. P., Zhang, Y. J., Xu, G. R., Wei, X. J., & Lee, K. P. (2007). Optimization strategies for separation of sulfadiazines using Box-Behnken design by liquid chromatography and capillary electrophoresis. Journal of Central South University of Technology, 14(2), 196–201. https://doi.org/10.1007/s11771-007-0039-7

Hasan, M., Uddin, N., Hasan, R., Islam, M., Hossain, M., Rahman, A. B., Hossain, S., Chowdhury, I. A., & Rana, S. (2014). Analgesic and anti-inflammatory activities of leaf extract of Mallotus repandus (Wild.) Muell. Arg. BioMed Research International, 2014(1), Article 539807. https://doi.org/10.1155/2014/539807

Herbal Product Division, Food and Drug Administration. (2021). National herbal medicine database in 2021. Minnie Group. https://herbal.fda.moph.go.th/media.php?id=565337537405657088&name=2023-1115ebookD3.pdf [in Thai]

Hiradeve, S. M., & Rangari, V. D. (2014). Elephantopus scaber Linn.: A review on its ethnomedical, phytochemical and pharmacological profile. Journal of Applied Biomedicine, 12(2), 49–61. https://doi.org/10.1016/j.jab.2014.01.008

Junairiah, J., Wulandari, D. A., Utami, E. S. W., & Zuraidassanaaz, N. I. (2021). Callus induction and secondary metabolites profile from Elephantopus scaber L. Journal of Tropical Biodiversity and Biotechnology, 6(1), Article jtbb59234. https://doi.org/10.22146/JTBB.59234

Kriangkrai, W., Sarasuk, P., Tothong, T., Khumpirapang, N., & Wittaya-areekul, S. (2021). Formulation optimization and characterization of spray-dried medium chain triglycerides-rich oil. Key Engineering Materials, 901, 73–78. https://doi.org/10.4028/www.scientific.net/KEM.901.73

Maitnork, K., & Konsue, A. (2019). Evaluation on phytochemical constituents and antioxidant activities of various formula from Ko-Klan remedies by aqueous infusion preparation method. In Proceedings of the 6th International Conference on Food Agriculture & Biotechnology (pp. 139–143). Faculty of Technology, Mahasarakham University. https://doi.org/10.14457/MSU.res.2019.27

Montgomery, D. C. (2017). Design and analysis of experiments (9th ed.). John Wiley & Sons.

Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2016). Response surface methodology: Process and product optimization using designed experiments (4th ed.). John Wiley & Sons.

Pongsaree, R., Vajaradul, Y., Fakkham, S., & Kamoltham, T. (2020). Comparison in efficacy and safety of Koklan mixture formula 3 and diclofenac for pain relieving in primary knee osteoarthritis. Systemic Reviews in Pharmacy, 11(11), 1457–1465.

Rajput, M. S., Nirmal, N. P., Nirmal, S. J., & Santivarangkna, C. (2022). Bio-actives from Caesalpinia sappan L.: Recent advancements in phytochemistry and pharmacology. South African Journal of Botany, 151(Part B), 60–74. https://doi.org/10.1016/j.sajb.2021.11.021

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3

Salleh, H. W., Hashim, N. A., & Khamis, S. (2021). Chemical constituents of Piper ribesioides. Chemistry of Natural Compounds, 57(4), 795–797. https://doi.org/10.1007/s10600-021-03481-0

Sharma, D., Sahu, A. N., Mujeeb, M., Bharti, A., Sharma, A., Tripathi, R. K., & Ashraf, K. (2012). Development of pharmacognostical profile of Crytolepis buchanani Roem. & Schult. International Journal of Pharmacy and Pharmaceutical Sciences, 4(2), 615–618.

Shofinita, D., Bindar, Y., Samadhi, T. W., Jaelawijaya, A. A., Theodric, D., & Achmadi, A. B. (2024). Effect of extraction and spray drying temperatures on the bioactive materials content in red dragon fruit skin. International Journal of Technology, 15(5), 1282–1291. https://doi.org/10.14716/ijtech.v15i5.6040

Sonsnik, A., & Seremeta, K. P. (2015). Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Advances in Colloid and Interface Science, 223, 40–54. https://doi.org/10.1016/j.cis.2015.05.003

Sriset, Y., Chatuphonprasert, W., & Jarukamjorn, K. (2021). In vitro antioxidant potential of Mallotus repandus (Wild.) Muell. Arg. stem extract and its active constituent bergenin. Songklanakarin Journal of Science and Technology, 43(1), 24–30.

Yang, Y. (2010). Chinese herbal formulas: Treatment principles and comparison strategies. Churchill Livingstone.