Transforming herbal medicines: Integrating traditional knowledge with modern pharmaceutical advancements
Main Article Content
Abstract
Herbal medicines have been known for centuries for healing and maintaining human health; according to the WHO, over 80% of the world’s population relies on them for primary healthcare. Different countries and cultures have their own traditional medicine systems that utilize natural products, and humans have utilized that vast reservoir of knowledge for the benefit of society. Over time, the availability of standardized conventional medicines has decreased interest in herbal medicines. However, following the emergence of life-threatening viral diseases, interest in herbal medicines has resurged, leading to their increased use as remedies or for preventive purposes. However, the inconsistent quality, arising from issues such as authenticity, geographical origin, species variation, and a lack of quality control, has cast doubt on the efficacy of these natural treatments. Currently, advancements in sophisticated techniques for establishing herbal standards, including modern extraction technologies such as supercritical fluid, ultrasound-assisted and microwave-assisted extraction; analytical tools like HPLC-MS, spectroscopy, and DNA barcoding; and in silico approaches such as computational drug screening and network pharmacology, have renewed interest in herbal medicines. Historically, herbal medicines were prepared in traditional dosage forms, which have evolved into standardized preparations through scientific advancement. Modernizing the field through the development of nano-formulation, the enhancement of extraction and analytical techniques, and the application of DNA fingerprinting, biotechnological screening, and computational methods is establishing pharmacological efficacy and standardization. These innovations provide the proof of concept needed to convert ancient knowledge into modern remedies. Various formulation approaches, representing pharmaceutical innovations in herbal medicines, have been found to increase bioavailability by up to 5-50 times and improve the stability of dosage forms, resulting in enhanced efficacy. Recognizing these advancements, many countries have begun to regulate herbal products similarly to conventional medicines, implementing standards such as good manufacturing practices. The herbal market is expected to reach $437 billion by 2032, and these developments, combined with regulatory improvements, are assisting herbal treatments in gaining international recognition. Although herbal products are generally regarded as safe, multidisciplinary studies are needed to validate their safety and efficacy. Establishing clinical efficacy through clinical trials should be a primary focus of future research. With these innovations, herbal medicine holds the potential to address many challenges associated with chronic and communicable diseases.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Abdel-Rahman, A., Anyangwe, N., Carlacci, L., Casper, S., Danam, R. P., Enongene, E., Erives, G., Fabricant, D., Gudi, R., Hilmas, C. J., Hines, F., Howard, P., Levy, D., Lin, Y., Moore, R. J., Pfeiler, E., Thurmond, T. S., Turujman, S., & Walker, N. J. (2011). The safety and regulation of natural products used as foods and food ingredients. Toxicological Sciences, 123(2), 333–348. https://doi.org/10.1093/toxsci/kfr198
Abdullahi, A. A. (2011). Trends and challenges of traditional medicine in Africa. African Journal of Traditional, Complementary and Alternative Medicines, 8(5S), 115–123. https://doi.org/10.4314/ajtcam.v8i5S.5
Ahmad, I., Aqil, F., & Owais, M. (Eds.). (2006). Modern phytomedicine: Turning medicinal plants into drugs. Wiley-VCH.
Ahmad, N., Ahmad, R., Naqvi, A. A., Alam, M. A., Ashafaq, M., Samim, M., Iqbal, Z., & Ahmad, F. J. (2016). Rutin-encapsulated chitosan nanoparticles targeted to the brain in the treatment of cerebral ischemia. International Journal of Biological Macromolecules, 91, 640–655. https://doi.org/10.1016/j.ijbiomac.2016.06.001
Ahmed Khan, M. S., & Ahmed, I. (2019). Herbal medicine: Current trends and future prospects. In M. S. Ahmad Khan, I. Ahmad, & D. Chattopadhyay (Eds.), New look to phytomedicine. Academic Press.
Alves, R. R., & Rosa, I. M. (2007). Biodiversity, traditional medicine and public health: Where do they meet? Journal of Ethnobiology and Ethnomedicine, 3(1), Article 14. https://doi.org/10.1186/1746-4269-3-14
Ambwani, S., Tandon, R., Ambwani, T. K., & Malik, Y. S. (2018). Current knowledge on nanodelivery systems and their beneficial applications in enhancing the efficacy of herbal drugs. Journal of Experimental Biology and Agricultural Sciences, 6(1), 87–107. http://dx.doi.org/10.18006/2018.6(1).87.107
Anand, A., Gautam, P., & Ojha, S. (2024). Application of nanotechnology for herbal medicine development: A review. Letters in Drug Design & Discovery, 21(8), 1325–1333. https://doi.org/10.2174/1570180820666230308105723
Ansari, S. A., & Husain, Q. (2012). Potential applications of enzymes immobilized on/in nano materials: A review. Biotechnology Advances, 30(3), 512–523. https://doi.org/10.1016/j.biotechadv.2011.09.005
Ansari, S. H., Islam, F., & Sameem, M. (2012). Influence of nanotechnology on herbal drugs: A review. Journal of Advanced Pharmaceutical Technology & Research, 3(3), 142–146. https://doi.org/10.4103/2231-4040.101006
Ansorena, D., Gimeno, O., Astiasarán, I., & Bello, J. (2001). Analysis of volatile compounds by GC-MS of a dry fermented sausage: Chorizo de Pamplona. Food Research International, 34(1), 67–75. https://doi.org/10.1016/S0963-9969(00)00133-2
Arvizo, R. R., Bhattacharyya, S., Kudgus, R. A., Giri, K., Bhattacharya, R., & Mukherjee, P. (2012). Intrinsic therapeutic applications of noble metal nanoparticles: Past, present and future. Chemical Society Reviews, 41(7), 2943–2970. https://doi.org/10.1039/c2cs15355f
Atanasov, A. G., Waltenberger, B., Pferschy-Wenzig, E. M., Linder, T., Wawrosch, C., Uhrin, P., Temml, V., Wang, L., Schwaiger, S., Heiss, E. H., Rollinger, J. M., Schuster, D., Breuss, J. M., Bochkov, V., Mihovilovic, M. D., Kopp, B., Bauer, R., Dirsch, V. M., & Stuppner, H. (2015). Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology Advances, 33(8), 1582–1614. https://doi.org/10.1016/j.biotechadv.2015.08.001
Avadhani, K. S., Manikkath, J., Tiwari, M., Chandrasekhar, M., Godavarthi, A., Vidya, S. M., Hariharapura, R. C., Kalthur, G., Udupa, N., & Mutalik, S. (2017). Skin delivery of epigallocatechin-3-gallate (EGCG) and hyaluronic acid loaded nano-transfersomes for antioxidant and anti-aging effects in UV radiation induced skin damage. Drug Delivery, 24(1), 61–74. https://doi.org/10.1080/10717544.2016.1228718
Bairwa, N. K., Sethiya, N. K., & Mishra, S. (2010). Protective effect of stem bark of Ceiba pentandra Linn. against paracetamol-induced hepatotoxicity in rats. Pharmacognosy Research, 2(1), 26–30. https://doi.org/10.4103/0974-8490.60584
Baker, D. D., Chu, M., Oza, U., & Rajgarhia, V. (2007). The value of natural products to future pharmaceutical discovery. Natural Product Reports, 24(6), 1225–1244. https://doi.org/10.1039/b602241n
Bandaranayake, W. M. (2006). Quality control, screening, toxicity, and regulation of herbal drugs. In I. Ahmad, F. Aqil, & M. Owais (Eds.), Modern phytomedicine: Turning medicinal plants into drugs (pp. 25–57). Wiley-VCH.
Bansal, D., Hota, D., & Chakrabarti, A. (2010). Research methodological issues in evaluating herbal interventions. Open Access Journal of Clinical Trials, 2, 15–21. https://doi.org/10.2147/OAJCT.S9029
Baradaran, S., Ghasemi-Kasman, M., & Moghaddam, A. H. (2020). Nano-hesperetin enhances the functional recovery and endogenous remyelination of the optic pathway in focal demyelination model. Brain Research Bulletin, 164, 392–399. https://doi.org/10.1016/j.brainresbull.2020.09.006
Bhoi, A., Dwivedi, S. D., Singh, D., Singh, M. R., & Keshavkant, S. (2023). Worldwide health scenario from the perspective of herbal medicine research. In M. R. Singh & D. Singh (Eds.), Phytopharmaceuticals and herbal drugs. Academic Press.
Bhokare, S. G., Dongaonkar, C. C., Lahane, S. V., Salunke, P. B., Sawale, V. S., & Thombare, M. S. (2016). Herbal novel drug delivery - A review. World Journal of Pharmacy and Pharmaceutical Sciences, 5(8), 593–611. https://doi.org/10.20959/wjpps20168-7461
Bilia, A. R., & do Céu Costa, M. (2021). Medicinal plants and their preparations in the European market: Why has the harmonization failed? The cases of St. John’s wort, valerian, ginkgo, ginseng, and green tea. Phytomedicine, 81, Article 153421. https://doi.org/10.1016/j.phymed.2020.153421
Bisht, S., Feldmann, G., Soni, S., Ravi, R., Karikar, C., Maitra, A., & Maitra, A. (2007). Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): A novel strategy for human cancer therapy. Journal of Nanobiotechnology, 5, Article 3. https://doi.org/10.1186/1477-3155-5-3
Bodeker, G., Bhat, K., Burley, J., & Vantomme, P. (2003). Medicinal plants for forest conservation and health care. In S. E. Kuipers (Ed.), Trade in medicinal plants (Non-Wood Forest Products No. 11, pp. 45–59). Food and Agriculture Organization of the United Nations.
Boland, Y., Attout, A., Marchand-Brynaert, J., & Garcia, Y. (2007). Selective thin-layer chromatography of 4-R-1,2,4-triazoles. Journal of Chromatography A, 1141(1), 145–149. https://doi.org/10.1016/j.chroma.2006.12.012
Bonifácio, B. V., da Silva, P. B., Ramos, M. A. D. S., Negri, K. M. S., Bauab, T. M., & Chorilli, M. (2014). Nanotechnology-based drug delivery systems and herbal medicines: A review. International Journal of Nanomedicine, 9, 1–15. https://doi.org/10.2147/IJN.S52634
Booker, A., Johnston, D., & Heinrich, M. (2012). Value chains of herbal medicines—Research needs and key challenges in the context of ethnopharmacology. Journal of Ethnopharmacology, 140(3), 624–633. https://doi.org/10.1016/j.jep.2012.01.039
Bosetti, R. (2015). Cost–effectiveness of nanomedicine: The path to a future successful and dominant market? Nanomedicine, 10(12), 1851–1853. https://doi.org/10.2217/nnm.15.74
Buranatrakul, P., Sornchaithawatwong, C., Thongnopkoon, T., Phumchalao, K., Naksrichum, P., & Phrompittayarat, W. (2021). Formulation and stability of Prasaplai microemulsions. Science, Engineering and Health Studies, 15, Article 21050004. https://doi.org/10.14456/sehs.2021.17
Byeon, J. C., Ahn, J. B., Jang, W. S., Lee, S.-E., Choi, J.-S., & Park, J.-S. (2019). Recent formulation approaches to oral delivery of herbal medicines. Journal of Pharmaceutical Investigation, 49(1), 17–26. https://doi.org/10.1007/s40005-018-0394-4
Caesar, L. K., & Cech, N. B. (2019). Synergy and antagonism in natural product extracts: When 1 + 1 does not equal 2. Natural Product Reports, 36(6), 869–888. https://doi.org/10.1039/c9np00011a
Carmona, F., & Pereira, A. M. S. (2013). Herbal medicines: Old and new concepts, truths and misunderstandings. Revista Brasileira de Farmacognosia, 23(2), 379–385. https://doi.org/10.1590/S0102-695X2013005000018
Chaachouay, N., & Zidane, L. (2024). Plant-derived natural products: A source for drug discovery and development. Drugs and Drug Candidates, 3(1), 184–207. https://doi.org/10.3390/ddc3010011
Chen, Y.-C., Liu, Y.-C., El-shazly, M., Wu, T.-Y., Chang, J.-G., & Wu, Y.-C. (2019). Antrodia cinnamomea, a treasured medicinal mushroom, induces growth arrest in breast cancer cells, T47D cells: New mechanisms emerge. International Journal of Molecular Sciences, 20(4), Article 833. https://doi.org/10.3390/ijms20040833
Cheng, J. T. (2000). Review: Drug therapy in Chinese traditional medicine. Journal of Clinical Pharmacology, 40(5), 445–450. https://doi.org/10.1177/00912700022009198
Das, A. M. (2017). Clinical utility of nitisinone for the treatment of hereditary tyrosinemia type-1 (HT-1). The Application of Clinical Genetics, 10, 43–48. https://doi.org/10.2147/TACG.S113310
Das, J., Das, S., Samadder, A., Bhadra, K., & Khuda-Bukhsh, A. R. (2012). Poly (lactide-co-glycolide) encapsulated extract of Phytolacca decandra demonstrates better intervention against induced lung adenocarcinoma in mice and on A549 cells. European Journal of Pharmaceutical Sciences, 47(2), 313–324. https://doi.org/10.1016/j.ejps.2012.06.018
Das, S., Halder, A., Mandal, S., Mazumder, M. A. J., Bera, T., Mukherjee, A., & Roy, P. (2018). Andrographolide engineered gold nanoparticle to overcome drug resistant visceral leishmaniasis. Artificial Cells, Nanomedicine, and Biotechnology, 46(sup1), 751–762. https://doi.org/10.1080/21691401.2018.1435549
Das, S., Pradhan, G. K., Das, S., Nath, D., & Saha, K. D. (2015). Enhanced protective activity of nano formulated andrographolide against arsenic induced liver damage. Chemico-Biological Interactions, 242, 281–289. https://doi.org/10.1016/j.cbi.2015.10.011
De Jong, W. H., & Borm, P. J. (2008). Drug delivery and nanoparticles: Applications and hazards. International Journal of Nanomedicine, 3(2), 133–149. https://doi.org/10.2147/ijn.s596
De Silva, T. (1997). Industrial utilization of medicinal plants in developing countries. In Medicinal plants for forest conservation and health care (pp. 34–44). Food and Agriculture Organization of the United Nations.
Debnath, P. K., Banerjee, S., Debnath, P., Mitra, A., & Mukherjee, P. K. (2015). Ayurveda – opportunities for developing safe and effective treatment choices for the future. In P. K. Mukherjee (Ed.), Evidence-based validation of herbal medicine (pp. 427–454). Elsevier.
Deleu, D., Hanssens, Y., & Northway, M. G. (2004). Subcutaneous apomorphine: An evidence-based review of its use in Parkinson’s disease. Drugs & Aging, 21(11), 687–709. https://doi.org/10.2165/00002512-200421110-00001
Dent, M., & Matoba, N. (2020). Cancer biologics made in plants. Current Opinion in Biotechnology, 61, 82–88. https://doi.org/10.1016/j.copbio.2019.11.004
Detoni, C. B., de Oliveira, D. M., Santo, I. E., Pedro, A. S., El-Bacha, R., da Silva Velozo, E., Ferreira, D., Sarmento, B., & de Magalhães Cabral-Albuquerque, E. C. (2012). Evaluation of thermal-oxidative stability and antiglioma activity of Zanthoxylum tingoassuiba essential oil entrapped into multi- and unilamellar liposomes. Journal of Liposome Research, 22(1), 1–7. https://doi.org/10.3109/08982104.2011.573793
Devi, A., Devi, R., Kumar, S., Jeet, K., Chauhan, T., Dhatwalia, G., Nikhil, N., Chandel, S., & Kumar, A. (2022). Regulatory status of herbal drugs in India. International Journal of Applied Pharmaceutical Sciences and Research, 7(3), 30–35. https://doi.org/10.21477/ijapsr.7.3.1
Do, T., Santi, I., & Reich, E. (2019). A harmonized HPTLC method for identification of various caffeine containing herbal drugs, extracts, and products, and quantitative estimation of their caffeine content. Journal of Liquid Chromatography & Related Technologies, 42(9–10), 274–281. https://doi.org/10.1080/10826076.2019.1585612
Donsì, F., Cuomo, A., Marchese, E., & Ferrari, G. (2014). Infusion of essential oils for food stabilization: Unraveling the role of nanoemulsion-based delivery systems on mass transfer and antimicrobial activity. Innovative Food Science & Emerging Technologies, 22, 212–220. https://doi.org/10.1016/j.ifset.2014.01.008
Dubey, N. K., Kumar, R., & Tripathi, P. (2004). Global promotion of herbal medicine: India’s opportunity. Current Science, 86(1), 37–41.
Ekor, M. (2014). The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Frontiers in Pharmacology, 4, Article 177. https://doi.org/10.3389/fphar.2013.00177
El-Aneed, A., Cohen, A., & Banoub, J. (2009). Mass spectrometry, review of the basics: Electrospray, MALDI, and commonly used mass analyzers. Applied Spectroscopy Reviews, 44(3), 210–230. https://doi.org/10.1080/05704920902717872
El-Samaligy, M. S., Afifi, N. N., & Mahmoud, E. A. (2006). Evaluation of hybrid liposomes-encapsulated silymarin regarding physical stability and in vivo performance. International Journal of Pharmaceutics, 319(1–2), 121–129. https://doi.org/10.1016/j.ijpharm.2006.04.023
Elkordy, A. A., Haj-Ahmad, R. R., Awaad, A. S., & Zaki, R. M. (2021). An overview on natural product drug formulations from conventional medicines to nanomedicines: Past, present and future. Journal of Drug Delivery Science and Technology, 63, Article 102459. https://doi.org/10.1016/j.jddst.2021.102459
Fabricant, D. S., & Farnsworth, N. R. (2001). The value of plants used in traditional medicine for drug discovery. Environmental Health Perspectives, 109(Suppl. 1), 69–75. https://doi.org/10.1289/ehp.01109s169
Farah, M. H., Edwards, R., Lindquist, M., Leon, C., & Shaw, D. (2000). International monitoring of adverse health effects associated with herbal medicines. Pharmacoepidemiology and Drug Safety, 9(2), 105–112. https://doi.org/10.1002/(SICI)1099-1557(200003/04)9:2<105::AID-PDS486>3.0.CO;2-2
Farooq, M. A., Niazi, A. K., Akhtar, J., Saifullah, S., Farooq, M., Souri, Z., Karimi, N., & Rengel, Z. (2019a). Acquiring control: The evolution of ROS-induced oxidative stress and redox signaling pathways in plant stress responses. Plant Physiology and Biochemistry, 141, 353–369. https://doi.org/10.1016/j.plaphy.2019.04.039
Farooq, R. (2019). Developing a conceptual framework of knowledge management. International Journal of Innovation Science, 11(1), 139–160.
Farooq, S., Mehmood, Z., Qais, F. A., Khan, M. S., & Ahmad, I. (2019b). Nanoparticles in Ayurvedic medicine: Potential and prospects. In J. N. Govil, V. K. Singh, & T. Ahmad (Eds.), New look to phytomedicine: Advancements in herbal products as novel drug leads (pp. 581–596). Academic Press.
Gibert-Tisseuil, F. (1998). Réflexions sur la médecine traditionnelle chinoise et sa pharmacopée [Reflections on traditional Chinese medicine and its pharmacopoeia]. Annales Pharmaceutiques Françaises, 56(6), 282–285.
Gomes, C., Moreira, R. G., & Castell‐Perez, E. (2011). Poly (DL‐lactide‐co‐glycolide) (PLGA) nanoparticles with entrapped trans‐cinnamaldehyde and eugenol for antimicrobial delivery applications. Journal of Food Science, 76(2), N16–N24. https://doi.org/10.1111/j.1750-3841.2010.01985.x
Gonfa, Y. H., Tessema, F. B., Bachheti, A., Rai, N., Tadesse, M. G., Nasser Singab, A., Chaubey, K. K., & Bachheti, R. K. (2023). Anti-inflammatory activity of phytochemicals from medicinal plants and their nanoparticles: A review. Current Research in Biotechnology, 6, Article 100152. https://doi.org/10.1016/j.crbiot.2023.100152
Gouveia, B. G., Rijo, P., Gonçalo, T. S., & Reis, C. P. (2015). Good manufacturing practices for medicinal products for human use. Journal of Pharmacy and Bioallied Sciences, 7(2), 87–96. https://doi.org/10.4103/0975-7406.154424
Gunasekaran, T., Haile, T., Nigusse, T., & Dhanaraju, M. D. (2014). Nanotechnology: An effective tool for enhancing bioavailability and bioactivity of phytomedicine. Asian Pacific Journal of Tropical Biomedicine, 4(Suppl. 1), S1–S7. https://doi.org/10.12980/APJTB.4.2014C980
Han, M. K., Barreto, T. A., Martinez, F. J., Comstock, A. T., & Sajjan, U. S. (2020). Randomised clinical trial to determine the safety of quercetin supplementation in patients with chronic obstructive pulmonary disease. BMJ Open Respiratory Research, 7(1), Article e000392. https://doi.org/10.1136/bmjresp-2018-000392
Hasheminejad, N., Khodaiyan, F., & Safari, M. (2019). Improving the antifungal activity of clove essential oil encapsulated by chitosan nanoparticles. Food Chemistry, 275, 113–122. https://doi.org/10.1016/j.foodchem.2018.09.085
Heinrich, M., & Lee Teoh, H. (2004). Galanthamine from snowdrop—the development of a modern drug against Alzheimer’s disease from local Caucasian knowledge. Journal of Ethnopharmacology, 92(2–3), 147–162. https://doi.org/10.1016/j.jep.2004.02.012
Holmes, F. A., Walters, R. S., Theriault, R. L., Forman, A. D., Newton, L. K., Raber, M. N., Buzdar, A. U., Frye, D. K., & Hortobagyi, G. N. (1991). Phase II trial of taxol, an active drug in the treatment of metastatic breast cancer. Journal of the National Cancer Institute, 83(24), 1797–1805. https://doi.org/10.1093/jnci/83.24.1797-a
Hong, J., Yang, L., Zhang, D., & Shi, J. (2016). Plant metabolomics: An indispensable system biology tool for plant science. International Journal of Molecular Sciences, 17(6), Article 767. https://doi.org/10.3390/ijms17060767
Hoshyar, N., Gray, S., Han, H., & Bao, G. (2016). The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (London, England), 11(6), 673–692. https://doi.org/10.2217/nnm.16.5
Huang, X.-L., Li, X.-J., Qin, Q.-F., Li, Y.-S., Zhang, W. K., & Tang, H.-B. (2019). Anti-inflammatory and antinociceptive effects of active ingredients in the essential oils from Gynura procumbens, a traditional medicine and a new and popular food material. Journal of Ethnopharmacology, 239, Article 111916. https://doi.org/10.1016/j.jep.2019.111916
Izgelov, D., Cherniakov, I., Aldouby Bier, G., Domb, A. J., & Hoffman, A. (2018). The effect of piperine pro-nano lipospheres on direct intestinal phase II metabolism: The raloxifene paradigm of enhanced oral bioavailability. Molecular Pharmaceutics, 15(4), 1548–1555. https://doi.org/10.1021/acs.molpharmaceut.7b01090
Jeevanandam, J., Chan, Y. S., & Danquah, M. K. (2016). Nano-formulations of drugs: Recent developments, impact and challenges. Biochimie, 128–129, 99–112. https://doi.org/10.1016/j.biochi.2016.07.008
Kamboj, A. (2012). Analytical evaluation of herbal drugs. In O. Vallisuta & S. M. Olimat (Eds.), Drug discovery research in pharmacognosy (pp. 23–60). InTechOpen. http://www.intechopen.com/books/drug-discovery-research-in-pharmacognosy/analytical-evaluation-of-herbal-drugs
Khalaj, R., Moghaddam, A. H., & Zare, M. (2018). Hesperetin and it nanocrystals ameliorate social behavior deficits and oxido-inflammatory stress in rat model of autism. International Journal of Developmental Neuroscience, 69, 80–87. https://doi.org/10.1016/j.ijdevneu.2018.06.009
Kheradmand, E., Moghaddam, A. H., & Zare, M. (2018). Neuroprotective effect of hesperetin and nano-hesperetin on recognition memory impairment and the elevated oxygen stress in rat model of Alzheimer’s disease. Biomedicine & Pharmacotherapy, 97, 1096–1101. https://doi.org/10.1016/j.biopha.2017.11.047
Khuda-Bukhsh, A. R., Bhattacharyya, S. S., Paul, S., & Boujedaini, N. (2010). Polymeric nanoparticle encapsulation of a naturally occurring plant scopoletin and its effects on human melanoma cell A375. Journal of Chinese Integrative Medicine, 8(9), 853–862. https://doi.org/10.3736/jcim20100909
Kim, K. H., Lee, J. A., Go, H.-Y., Park, S., & Shin, S. (2020). Traditional Korean medicine education in the world. Integrative Medicine Research, 9(2), Article 100410. https://doi.org/10.1016/j.imr.2020.100410
Klein-Junior, L. C., de Souza, M. R., Viaene, J., Bresolin, T. M. B., de Gasper, A. L., Henriques, A. T., & Vander Heyden, Y. (2021). Quality control of herbal medicines: From traditional techniques to state-of-the-art approaches. Planta Medica, 87(12/13), 964–988. https://doi.org/10.1055/a-1529-8339
Krishnan, P., Kruger, N. J., & Ratcliffe, R. G. (2005). Metabolite fingerprinting and profiling in plants using NMR. Journal of Experimental Botany, 56(410), 255–265. https://doi.org/10.1093/jxb/eri010
Kumar, S. P., Birundha, K., Kaveri, K., & Devi, K. T. R. (2015). Antioxidant studies of chitosan nanoparticles containing naringenin and their cytotoxicity effects in lung cancer cells. International Journal of Biological Macromolecules, 78, 87–95. https://doi.org/10.1016/j.ijbiomac.2015.03.045
Kumar, V., Chaudhary, H., & Kamboj, A. (2018). Development and evaluation of isradipine via rutin-loaded coated solid–lipid nanoparticles. Interventional Medicine and Applied Science, 10(4), 236–246. https://doi.org/10.1556/1646.10.2018.45
Kumar, V., Garg, V., & Dureja, H. (2022). Nanomedicine-based approaches for delivery of herbal compounds. Traditional Medicine Research, 7(5), Article 48. https://doi.org/10.53388/TMR20220223001
Kunle, O. F., Egharevba, H. O., & Ahmadu, P. O. (2012). Standardization of herbal medicines – A review. International Journal of Biodiversity and Conservation, 4(3), 101–112. https://doi.org/10.5897/IJBC11.163
Lai, F., Wissing, S. A., Müller, R. H., & Fadda, A. M. (2006). Artemisia arborescens L essential oil-loaded solid lipid nanoparticles for potential agricultural application: Preparation and characterization. AAPS PharmSciTech, 7(1), Article 2. https://doi.org/10.1208/pt070102
Lao, C. D., Ruffin, M. T., Normolle, D., Heath, D. D., Murray, S. I., Bailey, J. M., Boggs, M. E., Crowell, J., Rock, C. L., & Brenner, D. E. (2006). Dose escalation of a curcuminoid formulation. BMC Complementary and Alternative Medicine, 6, Article 10. https://doi.org/10.1186/1472-6882-6-10
Lehmann, H. (2012). A Westerner’s question about traditional Chinese medicine: Are the Yinyang concept and the Wuxing concept of equal philosophical and medical rank? Journal of Chinese Integrative Medicine, 10(3), 237–248. https://doi.org/10.3736/jcim20120301
Leite, P. M., Miranda, A. P. N., Amorim, J. M., Duarte, R. C. F., Bertolucci, S. K. V., das Graças Carvalho, M., & Castilho, R. O. (2019). In vitro anticoagulant activity of Mikania laevigata: Deepening the study of the possible interaction between guaco and anticoagulants. Journal of Cardiovascular Pharmacology, 74(6), 574–583. https://doi.org/10.1097/FJC.0000000000000745
Li-Weber, M. (2009). New therapeutic aspects of flavones: The anticancer properties of Scutellaria and its main active constituents Wogonin, Baicalein, and Baicalin. Cancer Treatment Reviews, 35(1), 57–68. https://doi.org/10.1016/j.ctrv.2008.09.005
Li, H., Zhao, X., Ma, Y., Zhai, G., Li, L., & Lou, H. (2009). Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. Journal of Controlled Release, 133(3), 238–244. https://doi.org/10.1016/j.jconrel.2008.10.002
Li, Y. (2012). Qinghaosu (artemisinin): Chemistry and pharmacology. Acta Pharmacologica Sinica, 33(9), 1141–1146. https://doi.org/10.1038/aps.2012.104
Liang, Y.-Z., Xie, P., & Chan, K. (2004). Quality control of herbal medicines. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 812(1–2), 53–70. https://doi.org/10.1016/j.jchromb.2004.08.041
Liu, Y., Liu, W., Xiong, S., Luo, J., Li, Y., Zhao, Y., Wang, Q., Zhang, Z., Chen, X., & Chen, T. (2020). Highly stabilized nanocrystals delivering Ginkgolide B in protecting against Parkinson’s disease. International Journal of Pharmaceutics, 577, Article 119053. https://doi.org/10.1016/j.ijpharm.2020.119053
Liu, Y., Zhang, C., Cheng, L., Wang, H., Lu, M., & Xu, H. (2024). Enhancing both oral bioavailability and anti-ischemic stroke efficacy of ginkgolide B by preparing nanocrystals self-stabilized Pickering nano-emulsion. European Journal of Pharmaceutical Sciences, 192, Article 106620. https://doi.org/10.1016/j.ejps.2023.106620
Luan, X., Huang, M., Ke, B.-W., Ge, G.-B., & Zhang, W.-D. (2023). [Strategy and challenge of innovative drug research and development from clinically effective ingredients of traditional Chinese medicine]. Zhongguo Zhong Yao Za Zhi, 48(7), 1705–1710. https://doi.org/10.19540/j.cnki.cjcmm.20230112.201
Ma, Y., Yang, Y., Xie, J., Xu, J., Yue, P., & Yang, M. (2018). Novel nanocrystal-based solid dispersion with high drug loading, enhanced dissolution, and bioavailability of andrographolide. International Journal of Nanomedicine, 13, 3763–3779. https://doi.org/10.2147/IJN.S164228
Madhav, N. V., Upadhyaya, K., & Bisht, A. (2011). Phytochemical screening and standardization of polyherbal formulation for dyslipidemia. International Journal of Pharmacy and Pharmaceutical Sciences, 3, 235–238.
Maghami, M., Motalebi, A. A., & Anvar, S. A. A. (2019). Influence of chitosan nanoparticles and fennel essential oils (Foeniculum vulgare) on the shelf life of Huso huso fish fillets during storage. Food Science & Nutrition, 7(9), 3030–3041. https://doi.org/10.1002/fsn3.1161
Maity, S., Mukhopadhyay, P., Kundu, P. P., & Chakraborti, A. S. (2017). Alginate coated chitosan core-shell nanoparticles for efficient oral delivery of naringenin in diabetic animals—An in vitro and in vivo approach. Carbohydrate Polymers, 170, 124–132. https://doi.org/10.1016/j.carbpol.2017.04.066
Markowski, A., Jaromin, A., Migdał, P., Olczak, E., Zygmunt, A., Zaremba-Czogalla, M., Pawlik, K., & Gubernator, J. (2022). Design and development of a new type of hybrid PLGA/lipid nanoparticle as an ursolic acid delivery system against pancreatic ductal adenocarcinoma cells. International Journal of Molecular Sciences, 23(10), Article 5536. https://doi.org/10.3390/ijms23105536
Matos, L. C., Machado, J. P., Monteiro, F. J., & Greten, H. J. (2021). Understanding traditional Chinese medicine therapeutics: An overview of the basics and clinical applications. Healthcare, 9(3), Article 257. https://doi.org/10.3390/healthcare9030257
Mei, Z., Chen, H., Weng, T., Yang, Y., & Yang, X. (2003). Solid lipid nanoparticle and microemulsion for topical delivery of triptolide. European Journal of Pharmaceutics and Biopharmaceutics, 56(2), 189–196. https://doi.org/10.1016/s0939-6411(03)00067-5
Min, K. H., Park, K., Kim, Y.-S., Bae, S. M., Lee, S., Jo, H. G., Park, R.-W., Kim, I.-S., Jeong, S. Y., Kim, K., & Kwon, I. C. (2008). Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy. Journal of Controlled Release, 127(3), 208–218. https://doi.org/10.1016/j.jconrel.2008.01.013
Misra, S. (2012). Randomized double blind placebo control studies, the “Gold Standard” in intervention based studies. Indian Journal of Sexually Transmitted Diseases and AIDS, 33(2), 131–134. https://doi.org/10.4103/0253-7184.102130
Moradi, S. Z., Momtaz, S., Bayrami, Z., Farzaei, M. H., & Abdollahi, M. (2020). Nanoformulations of herbal extracts in treatment of neurodegenerative disorders. Frontiers in Bioengineering and Biotechnology, 8, Article 238. https://doi.org/10.3389/fbioe.2020.00238
Mordeniz, C. (2019). Integration of traditional and complementary medicine into evidence-based clinical practice. In C. Mordeniz (Ed.), Traditional and complementary medicine. IntechOpen. https://doi.org/10.5772/intechopen.87061
Mukerjee, A., & Vishwanatha, J. K. (2009). Formulation, characterization and evaluation of curcumin-loaded PLGA nanospheres for cancer therapy. Anticancer Research, 29(10), 3867–3875.
Mukherjee, P. K. (2002). Problems and prospects for good manufacturing practice for herbal drugs in Indian systems of medicine. Drug Information Journal: DIJ/Drug Information Association, 36(3), 635–644. https://doi.org/10.1177/009286150203600318
Mukherjee, P. K., Venkatesh, M., & Kumar, V. (2007). An overview on the development in regulation and control of medicinal and aromatic plants in the Indian system of medicine. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 6(4), 129–136.
Mundy, L., Pendry, B., & Rahman, M. (2016). Antimicrobial resistance and synergy in herbal medicine. Journal of Herbal Medicine, 6(2), 53–58. https://doi.org/10.1016/j.hermed.2016.03.001
Nantarat, T., Chansakaow, S., & Leelapornpisid, P. (2015). Optimization, characterization and stability of essential oils blend loaded nanoemulsions by PIC technique for anti-tyrosinase activity. International Journal of Pharmacy and Pharmaceutical Sciences, 7(3), 308–312.
Negahdari, R., Bohlouli, S., Sharifi, S., Maleki Dizaj, S., Rahbar Saadat, Y., Khezri, K., Jafari, S., Ahmadian, E., Gorbani Jahandizi, N., & Raeesi, S. (2021). Therapeutic benefits of rutin and its nanoformulations. Phytotherapy Research, 35(4), 1719–1738. https://doi.org/10.1002/ptr.6904
Nikam, P. H., Kareparamban, J., Jadhav, A., & Kadam, V. (2012). Future trends in standardization of herbal drugs. Journal of Applied Pharmaceutical Science, 2(6), 38–44. https://doi.org/10.7324/JAPS.2012.2631
Normile, D. (2003). Asian medicine. The new face of traditional Chinese medicine. Science, 299(5604), 188–190. https://doi.org/10.1126/science.299.5604.188
Ong, E. S. (2004). Extraction methods and chemical standardization of botanicals and herbal preparations. Journal of Chromatography B, 812(1–2), 23–33. https://doi.org/10.1016/j.jchromb.2004.07.041
Pal, D., Sahu, C. K., & Haldar, A. (2014). Bhasma: The ancient Indian nanomedicine. Journal of Advanced Pharmaceutical Technology & Research, 5(1), 4–12. https://doi.org/10.4103/2231-4040.126980
Pan, S.-Y., Litscher, G., Gao, S.-H., Zhou, S.-F., Yu, Z.-L., Chen, H.-Q., Zhang, S.-F., Tang, M.-K., Sun, J.-N., & Ko, K.-M. (2014). Historical perspective of traditional indigenous medical practices: The current renaissance and conservation of herbal resources. Evidence-Based Complementary and Alternative Medicine, 2014(1), Article 525340. https://doi.org/10.1155/2014/525340
Pandey, J., Singh, R. P., & Khare, R. (2015). Use of nanotechnology and present day science in the ancient era. International Journal of Engineering and Technical Research, 3(11), 139–140.
Pandey, M. M., Rastogi, S., & Rawat, A. K. S. (2013). Indian traditional Ayurvedic system of medicine and nutritional supplementation. Evidence-Based Complementary and Alternative Medicine, 2013(1), Article 376327. https://doi.org/10.1155/2013/376327
Pandey, P., Rahman, M., Bhatt, P. C., Beg, S., Paul, B., Hafeez, A., Al-Abbasi, F. A., Nadeem, M. S., Baothman, O., Anwar, F., & Kumar, V. (2018). Implication of nano-antioxidant therapy for treatment of hepatocellular carcinoma using PLGA nanoparticles of rutin. Nanomedicine, 13(8), 849–870. https://doi.org/10.2217/nnm-2017-0306
Parasuraman, S., Thing, G. S., & Dhanaraj, S. A. (2014). Polyherbal formulation: Concept of Ayurveda. Pharmacognosy Reviews, 8(16), 73–80. https://doi.org/10.4103/0973-7847.134229
Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., Rodriguez-Torres, M. D. P., Acosta-Torres, L. S., Diaz-Torres, L. A., Grillo, R., Swamy, M. K., Sharma, S., Habtemariam, S., & Shin, H.-S. (2018). Nano based drug delivery systems: Recent developments and future prospects. Journal of Nanobiotechnology, 16(1), Article 71. https://doi.org/10.1186/s12951-018-0392-8
Patwardhan, B. (2014). Bridging Ayurveda with evidence-based scientific approaches in medicine. EPMA Journal, 5, Article 19. https://doi.org/10.1186/1878-5085-5-19
Paul, S., Bhattacharyya, S. S., Boujedaini, N., & Khuda-Bukhsh, A. R. (2011). Anticancer potentials of root extract of Polygala senega and its PLGA nanoparticles-encapsulated form. Evidence-Based Complementary and Alternative Medicine, 2011(1), Article 517204. https://doi.org/10.1155/2011/517204
Pellegrini, C. A., & de Santibañes, E. (2019). Achieving mastery in the practice of surgery. Annals of Surgery, 270(5), 735–737. https://doi.org/10.1097/SLA.0000000000003477
Pongnimitprasert, N., Wadkhien, K., Chinpaisal, C., Satiraphan, M., & Wetwitayaklung, P. (2018). Anti-inflammatory effects of rhein and crude extracts from Cassia alata L. in HaCaT cells. Science, Engineering and Health Studies, 12(1), 19–32. https://doi.org/10.14456/sehs.2018.3
Rajendran, R., Radhai, R., Kotresh, T. M., & Csiszar, E. (2013). Development of antimicrobial cotton fabrics using herb loaded nanoparticles. Carbohydrate Polymers, 91(2), 613–617. https://doi.org/10.1016/j.carbpol.2012.08.064
Ravi, G. S., Charyulu, R. N., Dubey, A., Prabhu, P., Hebbar, S., & Mathias, A. C. (2018). Nano-lipid complex of rutin: Development, characterisation and in vivo investigation of hepatoprotective, antioxidant activity and bioavailability study in rats. AAPS PharmSciTech, 19(8), 3631–3649. https://doi.org/10.1208/s12249-018-1195-9
Rizvi, S. A. A., & Saleh, A. M. (2018). Applications of nanoparticle systems in drug delivery technology. Saudi Pharmaceutical Journal, 26(1), 64–70. https://doi.org/10.1016/j.jsps.2017.10.012
Rodrigues, E., & Barnes, J. (2013). Pharmacovigilance of herbal medicines: The potential contributions of ethnobotanical and ethnopharmacological studies. Drug Safety, 36, 1–12. https://doi.org/10.1007/s40264-012-0005-7
Rombolà, L., Scuteri, D., Marilisa, S., Watanabe, C., Morrone, L. A., Bagetta, G., & Corasaniti, M. T. (2020). Pharmacokinetic interactions between herbal medicines and drugs: Their mechanisms and clinical relevance. Life, 10(7), Article 106. https://doi.org/10.3390/life10070106
Sachan, A. K., & Gupta, A. (2015). A review on nanotized herbal drugs. International Journal of Pharmaceutical Sciences and Research, 6(3), 961–970. http://dx.doi.org/10.13040/IJPSR.0975-8232.6(3).961-70
Saggar, S., Mir, P. A., Kumar, N., Chawla, A., Uppal, J., Shilpa, & Kaur, A. (2022). Traditional and herbal medicines: Opportunities and challenges. Pharmacognosy Research, 14(2), 107–114. https://doi.org/10.5530/pres.14.2.15
Sahoo, N., & Manchikanti, P. (2013). Herbal drug regulation and commercialization: An Indian industry perspective. The Journal of Alternative and Complementary Medicine, 19(12), 957–963. https://doi.org/10.1089/acm.2012.0275
Sahoo, N., Choudhury, K., & Manchikanti, P. (2009). Manufacturing of biodrugs: Need for harmonization in regulatory standards. BioDrugs, 23(4), 217–229. https://doi.org/10.2165/11317110-000000000-00000
Sakai, T., & Morimoto, Y. (2022). The history of infectious diseases and medicine. Pathogens, 11(10), Article 1147. https://doi.org/10.3390/pathogens11101147
Sakkas, H., & Papadopoulou, C. (2017). Antimicrobial activity of basil, oregano, and thyme essential oils. Journal of Microbiology and Biotechnology, 27(3), 429–438. https://doi.org/10.4014/jmb.1608.08024
Sam, S. (2019). Importance and effectiveness of herbal medicines. Journal of Pharmacognosy and Phytochemistry, 8(2), 354–357.
Sarangi, M. K., & Padhi, S. (2018). Novel herbal drug delivery system: An overview. Archives of Medicine & Health Sciences, 6(1), 171–179. https://doi.org/10.4103/amhs.amhs_88_17
Sardana, S. (2012). Herbal drug development from natural sources. Journal of Advanced Pharmaceutical Technology & Research, 3(2), 82. https://doi.org/10.4103/2231-4040.97274
Sarkar, P. K., & Chaudhary, A. K. (2010). Ayurvedic Bhasma: The most ancient application of nanomedicine. Journal of Scientific & Industrial Research, 69, 901–905.
Schulz, V., Hänsel, R., & Tyler, V. E. (2001). Rational phytotherapy: A physician’s guide to herbal medicine (4th ed.). Springer-Verlag. https://doi.org/10.1007/978-3-642-98093-0
Sen, S., & Chakraborty, R. (2014). Traditional knowledge digital library: A distinctive approach to protect and promote Indian indigenous medicinal treasure. Current Science, 106(10), 1340–1343.
Sen, S., Chakraborty, R., & De, B. (2011). Challenges and opportunities in the advancement of herbal medicine: India’s position and role in a global context. Journal of Herbal Medicine, 1(3–4), 67–75. https://doi.org/10.1016/j.hermed.2011.11.001
Shanmugam, R., Priyanka, D. L., Madhuri, K., Gowthamarajan, K., Karri, V. V. S. R., Kumar, C. K. A., & Murali, P. (2017). Formulation and characterization of chitosan encapsulated phytoconstituents of curcumin and rutin nanoparticles. International Journal of Biological Macromolecules, 104(Part B), 1807–1812. https://doi.org/10.1016/j.ijbiomac.2017.06.112
Sharma, R., & Prajapati, P. K. (2016). Nanotechnology in medicine: Leads from Ayurveda. Journal of Pharmacy & BioAllied Sciences, 8(1), 80–81. https://doi.org/10.4103/0975-7406.171730
Sharma, S. (2015). Current status of herbal product: Regulatory overview. Journal of Pharmacy & BioAllied Sciences, 7(4), 293–296. https://doi.org/10.4103/0975-7406.168030
Sharma, U., & Chow, E. W. S. (2008). The attitudes of Hong Kong primary school principals toward integrated education. Asia Pacific Education Review, 9(3), 380–391.
Shaw, R. K., Acharya, L., & Mukherjee, A. K. (2009). Assessment of genetic diversity in a highly valuable medicinal plant Catharanthus roseus using molecular markers. Crop Breeding and Applied Biotechnology, 9, 52–59.
Shriwastav, A., & Gupta, S. K. (2017). Key issues in pilot scale production, harvesting and processing of algal biomass for biofuels. In S. K. Gupta, A. Malik, & F. Bux (Eds.), Algal biofuels: Recent advances and future prospects (pp. 247–258). Springer. https://doi.org/10.1007/978-3-319-51012-4_12
Singh, R., Gautam, N., Mishra, A., & Gupta, R. (2011a). Heavy metals and living systems: An overview. Indian Journal of Pharmacology, 43(3), 246–253. https://doi.org/10.4103/0253-7613.81505
Singh, R., Singh, S., Naik, H., Jain, D., & Bisla, S. (2011b). Herbal excipients in novel drug delivery system. International Journal of Comprehensive Pharmacy, 2, 1–7.
Sobharaksha, P., Mahamongkol, H., Channarong, S., Tansathien, K., & Wongtrakul, P. (2024). Development of mangiferin-loaded anisotropic emulsion for cosmetic applications: A comprehensive study on formulation, antioxidant activity, stability, and skin compatibility. Science, Engineering and Health Studies, 18, Article 24050022. https://doi.org/10.69598/sehs.18.24050022
Sookying, S., Piromyapron, M., Puttarak, P., Vimolmangkang, S., & Saokaew, S. (2021). Clinical effectiveness of Sahasthara remedy for relief of musculoskeletal pain: A systematic review and meta-analysis of randomized controlled trials. Science, Engineering and Health Studies, 15, Article 21050007. https://doi.org/10.69598/sehs.15.21050007
Sungthongjeen, S., Pitaksuteepong, T., Somsiri, A., & Sriamornsak, P. (1999). Studies on pectins as potential hydrogel matrices for controlled-release drug delivery. Drug Development and Industrial Pharmacy, 25(12), 1271–1276. https://doi.org/10.1081/DDC-100102298
Talaei, A., Hassanpour Moghadam, M., Sajadi Tabassi, S. A., & Mohajeri, S. A. (2015). Crocin, the main active saffron constituent, as an adjunctive treatment in major depressive disorder: A randomized, double-blind, placebo-controlled, pilot clinical trial. Journal of Affective Disorders, 174, 51–56. https://doi.org/10.1016/j.jad.2014.11.035
Tanaka, N., & Kashiwada, Y. (2021). Phytochemical studies on traditional herbal medicines based on the ethnopharmacological information obtained by field studies. Journal of Natural Medicines, 75(4), 762–783. https://doi.org/10.1007/s11418-021-01545-7
Tang, S., Ren, J., Kong, L., Yan, G., Liu, C., Han, Y., Sun, H., & Wang, X.-J. (2023). Ephedrae herba: A review of its phytochemistry, pharmacology, clinical application, and alkaloid toxicity. Molecules (Basel, Switzerland), 28(2), Article 663. https://doi.org/10.3390/molecules28020663
Tang, Y.-P., Xu, D.-Q., Yue, S.-J., Chen, Y.-Y., Fu, R.-J., & Bai, X. (2022). Modern research thoughts and methods on bio-active components of TCM formulae. Chinese Journal of Natural Medicines, 20(7), 481–493. https://doi.org/10.1016/S1875-5364(22)60206-1
Tegtmeier, M., Knierim, L., Schmidt, A., & Strube, J. (2023). Green manufacturing for herbal remedies with advanced pharmaceutical technology. Pharmaceutics, 15(1), Article 188. https://doi.org/10.3390/pharmaceutics15010188
Teja, P. K., Mithiya, J., Kate, A. S., Bairwa, K., & Chauthe, S. K. (2022). Herbal nanomedicines: Recent advancements, challenges, opportunities and regulatory overview. Phytomedicine, 96, Article 153890. https://doi.org/10.1016/j.phymed.2021.153890
Thillaivanan, S., & Samraj, K. (2014). Challenges, constraints and opportunities in herbal medicines – A review. International Journal of Herbal Medicine, 2(1), 21–24.
Thipunkaew, N., Chaivichacharn, P., Chanachai, P., Wongtrakul, P., & Channarong, S. (2024). Development and validation of TLC-densitometry method for quantitation of 1’-acetoxychavicol acetate in Alpinia galanga (L.) Willd. rhizome green solvent extracts. Science, Engineering and Health Studies, 18, 24050024. https://doi.org/10.69598/sehs.18.24050024
Tomar, V., Beuerle, T., & Sircar, D. (2019). A validated HPTLC method for the simultaneous quantifications of three phenolic acids and three withanolides from Withania somnifera plants and its herbal products. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 1124, 154–160. https://doi.org/10.1016/j.jchromb.2019.06.009
Ulrich-Merzenich, G., Zeitler, H., Jobst, D., Panek, D., Vetter, H., & Wagner, H. (2007). Application of the “-Omic-” technologies in phytomedicine. Phytomedicine, 14(1), 70–82. https://doi.org/10.1016/j.phymed.2006.11.011
Valencia‐Sullca, C., Jiménez, M., Jiménez, A., Atarés, L., Vargas, M., & Chiralt, A. (2016). Influence of liposome encapsulated essential oils on properties of chitosan films. Polymer International, 65(8), 979–987. https://doi.org/10.1002/pi.5143
Ved, D., & Goraya, G. (2011). Indian medicinal plant species of conservation concern in trade. Medplant: ENVIS Newsletter on Medicinal Plants, 3, 1–16.
Wang, J., Bi, C., Xi, H., & Wei, F. (2024). Effects of administering berberine alone or in combination on type 2 diabetes mellitus: A systematic review and meta-analysis. Frontiers in Pharmacology, 15, Article 1455534. https://doi.org/10.3389/fphar.2024.1455534
Wang, J., Guo, Y., & Li, G. L. (2016). Current status of standardization of traditional Chinese medicine in China. Evidence-Based Complementary and Alternative Medicine, 2016(1), Article 9123103. https://doi.org/10.1155/2016/9123103
Wang, Q., Wei, C., Weng, W., Bao, R., Adu-Frimpong, M., Toreniyazov, E., Ji, H., Xu, X.-M., & Yu, J. (2021). Enhancement of oral bioavailability and hypoglycemic activity of liquiritin-loaded precursor liposome. International Journal of Pharmaceutics, 592, Article 120036. https://doi.org/10.1016/j.ijpharm.2020.120036
Wang, Y.-S., Li, G.-L., Zhu, S.-B., Jing, F.-C., Liu, R.-D., Li, S.-S., He, J., & Lei, J.-D. (2020). A self-assembled nanoparticle platform based on amphiphilic oleanolic acid polyprodrug for cancer therapy. Chinese Journal of Polymer Science, 38(8), 819–829. https://doi.org/10.1007/s10118-020-2401-2
Wani, M. C., & Horwitz, S. B. (2014). Nature as a remarkable chemist: A personal story of the discovery and development of Taxol. Anti-Cancer Drugs, 25(5), 482–487. https://doi.org/10.1097/CAD.0000000000000063
Wani, M. C., Taylor, H. L., Wall, M. E., Coggon, P., & Mcphail, A. T. (1971). Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. Journal of the American Chemical Society, 93(9), 2325–2327. https://doi.org/10.1021/ja00738a045
Wei, C., Wang, Q., Weng, W., Adu-Frimpong, M., Toreniyazov, E., Ji, H., Xu, X., & Yu, J. (2022). Enhanced oral bioavailability and anti-hyperuricemic activity of liquiritin via a self-nanoemulsifying drug delivery system. Journal of the Science of Food and Agriculture, 102(5), 2032–2040. https://doi.org/10.1002/jsfa.11542
Wei, X.-C., Cao, B., Luo, C.-H., Huang, H.-Z., Tan, P., Xu, X.-R., Xu, R.-C., Yang, M., Zhang, Y., Han, L., & Zhang, D.-K. (2020). Recent advances of novel technologies for quality consistency assessment of natural herbal medicines and preparations. Chinese Medicine, 15, Article 56. https://doi.org/10.1186/s13020-020-00335-9
Wink, M. (2015). Modes of action of herbal medicines and plant secondary metabolites. Medicines (Basel), 2(3), 251–286. https://doi.org/10.3390/medicines2030251
World Health Organization. (1994). The international pharmacopoeia: Vol. 4, Tests, methods and general requirements – Quality specifications for pharmaceutical substances, excipients and dosage forms (3rd ed.). World Health Organization. https://iris.who.int/handle/10665/163942
World Health Organization. (2000). Obesity: Preventing and managing the global epidemic: Report of a WHO consultation (WHO Technical Report Series No. 894). World Health Organization. https://iris.who.int/items/933e09aa-64f9-46e9-8dbb-78d8cddf1a3d
World Health Organization. (2003). WHO Guidelines on Good Agricultural and Collection Practices [GACP] for medicinal plants. World Health Organization. https://www.who.int/publications/i/item/9241546271
World Health Organization. (2004). WHO guidelines on safety monitoring of herbal medicines in pharmacovigilance systems. World Health Organization. https://apps.who.int/iris/bitstream/handle/10665/43034/9241592214_eng.pdf
World Health Organization. (2005). National policy on traditional medicine and regulation of herbal medicines: Report of a WHO global survey. World Health Organization. https://iris.who.int/bitstream/handle/10665/43229/9241593237.pdf
World Health Organization. (2007). Quality assurance of pharmaceuticals: A compendium of guidelines and related materials (Vol. 2: Good manufacturing practices and inspection, 2nd ed.). World Health Organization. https://iris.who.int/handle/10665/43532
World Health Organization. (2011). Quality control methods for herbal materials. World Health Organization. https://www.who.int/publications/i/item/9789241500739
Wu, T.-H., Yen, F.-L., Lin, L.-T., Tsai, T.-R., Lin, C.-C., & Cham, T.-M. (2008). Preparation, physicochemical characterization, and antioxidant effects of quercetin nanoparticles. International Journal of Pharmaceutics, 346(1–2), 160–168. https://doi.org/10.1016/j.ijpharm.2007.06.036
Wu, Y., Luo, Y., Zhou, B., Mei, L., Wang, Q., & Zhang, B. (2019). Porous metal-organic framework (MOF) carrier for incorporation of volatile antimicrobial essential oil. Food Control, 98, 174–178. https://doi.org/10.1016/j.foodcont.2018.11.011
Xiao, Q., Mu, X., Liu, J., Li, B., Liu, H., Zhang, B., & Xiao, P. (2022). Plant metabolomics: A new strategy and tool for quality evaluation of Chinese medicinal materials. Chinese Medicine, 17, Article 45. https://doi.org/10.1186/s13020-022-00601-y
Xue, R., Fang, Z., Zhang, M., Yi, Z., Wen, C., & Shi, T. (2013). TCMID: Traditional Chinese medicine integrative database for herb molecular mechanism analysis. Nucleic Acids Research, 41(D1), D1089–D1095. https://doi.org/10.1093/nar/gks1100
Yadav, D., Suri, S., Choudhary, A., Sikender, M., Hemant, B. N., & Beg, N. (2011). Novel approach: Herbal remedies and natural products in pharmaceutical science as nano drug delivery systems. International Journal of Pharmacy & Technology, 3(3), 3092–3116.
Yavarpour-Bali, H., Ghasemi-Kasman, M., & Pirzadeh, M. (2019). Curcumin-loaded nanoparticles: A novel therapeutic strategy in treatment of central nervous system disorders. International Journal of Nanomedicine, 14, 4449–4460. https://doi.org/10.2147/IJN.S208332
Yen, F.-L., Wu, T.-H., Lin, L.-T., Cham, T.-M., & Lin, C.-C. (2008). Nanoparticles formulation of Cuscuta chinensis prevents acetaminophen-induced hepatotoxicity in rats. Food and Chemical Toxicology, 46(5), 1771–1777. https://doi.org/10.1016/j.fct.2008.01.021
Yen, F.-L., Wu, T.-H., Lin, L.-T., Cham, T.-M., & Lin, C.-C. (2009). Naringenin-loaded nanoparticles improve the physicochemical properties and the hepatoprotective effects of naringenin in orally-administered rats with CCl₄-induced acute liver failure. Pharmaceutical Research, 26(4), 893–902. https://doi.org/10.1007/s11095-008-9791-0
Yuan, H., Ma, Q., Ye, L., & Piao, G. (2016). The traditional medicine and modern medicine from natural products. Molecules, 21(5), Article 559. https://doi.org/10.3390/molecules21050559
Zhang, J., Hu, K., Di, L., Wang, P., Liu, Z., Zhang, J., Yue, P., Song, W., Zhang, J., Chen, T., Wang, Z., Zhang, Y., Wang, X., Zhan, C., Cheng, Y.-C., Li, X., Li, Q., Fan, J.-Y., Shen, Y., Han, J.-Y., & Qiao, H. (2021a). Traditional herbal medicine and nanomedicine: Converging disciplines to improve therapeutic efficacy and human health. Advanced Drug Delivery Reviews, 178, Article 113964. https://doi.org/10.1016/j.addr.2021.113964
Zhang, L., Yan, J., Liu, X., Ye, Z., Yang, X., Meyboom, R., Chan, K., Shaw, D., & Duez, P. (2012). Pharmacovigilance practice and risk control of Traditional Chinese Medicine drugs in China: Current status and future perspective. Journal of Ethnopharmacology, 140(3), 519–525. https://doi.org/10.1016/j.jep.2012.01.058
Zhang, R., Liu, F., Tian, Y., Cao, W., & Wang, R. (2021b). Editorial: Nanotechnology in traditional medicines and natural products. Frontiers in Chemistry, 9, Article 633419. https://doi.org/10.3389/fchem.2021.633419
Zhao, Y., Xiong, S., Liu, P., Liu, W., Wang, Q., Liu, Y., Tan, H., Chen, X., Shi, X., Wang, Q., & Chen, T. (2020). Polymeric nanoparticles-based brain delivery with improved therapeutic efficacy of ginkgolide B in Parkinson’s disease. International Journal of Nanomedicine, 15, 10453–10467. https://doi.org/10.2147/IJN.S272831
Zheng, X., Kan, B., Gou, M., Fu, S., Zhang, J., Men, K., Chen, L., Luo, F., Zhao, Y., Zhao, X., Wei, Y., & Qian, Z. (2010). Preparation of MPEG-PLA nanoparticle for honokiol delivery in vitro. International Journal of Pharmaceutics, 386(1–2), 262–267. https://doi.org/10.1016/j.ijpharm.2009.11.014
Zhou, J., Ouedraogo, M., Qu, F., & Duez, P. (2013). Potential genotoxicity of traditional Chinese medicinal plants and phytochemicals: An overview. Phytotherapy Research, 27(12), 1745–1755. https://doi.org/10.1002/ptr.4942
Zhu, D., Zhang, W.-G., Nie, X.-D., Ding, S.-W., Zhang, D.-T., & Yang, L. (2020). Rational design of ultra-small photoluminescent copper nano-dots loaded PLGA micro-vessels for targeted co-delivery of natural piperine molecules for the treatment of epilepsy. Journal of Photochemistry and Photobiology B: Biology, 205, Article 111805. https://doi.org/10.1016/j.jphotobiol.2020.111805