Effects of Intake Blades on Diesel Engine Performance

Main Article Content

Jarut Kunanoppadol

Abstract

The idea of using an intake blade is to increase turbulence in the intake manifold which, in turn, increases the higher mixing capability between fuel and air. The aim of research was to investigate the effects of the intake blade on performance of a diesel engine. The computer simulations were performed to analyze the effects of the intake blade’s angles and shapes on flow characteristics including velocity, turbulent viscosity, and pressure drop. From the simulations, the blade angle of 60 degree was the best in the term of the turbulent viscosity. The four blades shape was selected to test with a commercial diesel engine. The experimental results showed that using the intake blades with the tested diesel engine did not affect the engine performance included brake power, brake torque, and specific fuel consumption at the significance level of 0.05.

Downloads

Download data is not yet available.

Article Details

How to Cite
Kunanoppadol, J. (2015). Effects of Intake Blades on Diesel Engine Performance. Science, Engineering and Health Studies, 9(1), 17–27. https://doi.org/10.14456/sustj.2015.4
Section
Research Articles

References

C. D. Rakopoulos, E. G. G. (n.d.). Availability analysis of a turbocharged diesel engine operating under transient load conditions. Energy, (8): 1085–1104. doi:10.1016/j.energy.2004.02.028.

Ceviz, M. A., & Akın, M. (2010). Design of a new SI engine intake manifold with variable length plenum. Energy Conversion and Management, 51(11): 2239–2244. doi: 10.1016/j.enconman.2010.03.018.

Chehroudi, B., & Schuh, D. (1995). Intake-port flow behavior in a motored and fired two-stroke research engine. Experimental Thermal and Fluid Science, 10(1): 86–100. doi:10.1016/0894-1777(94)00067-I.

Davies, P. O. A. L. (1996). Piston engine intake and exhaust system design. Journal of Sound and Vibration, 190(4): 677–712. doi: 10.1006/ jsvi.1996.0085

Eyidogan, M., Ozsezen, A. N., Canakci, M., & Turkcan, A. (2010). Impact of alcohol–gasoline fuel blends on the performance and combustion characteristics of an SI engine. Fuel, 89(10): 2713–2720. doi: 10.1016/j.fuel.2010.01.032.

Fontana, G., & Galloni, E. (2009). Variable valve timing for fuel economy improvement in a small spark-ignition engine. Applied Energy, 86(1): 96–105. doi: 10.1016/j.apenergy.2008.04.009.

Galindo, J., Luján, J. M., Serrano, J. R., Dolz, V., & Guilain, S. (2004). Design of an exhaust manifold to improve transient performance of a high-speed turbocharged diesel engine. Experimental Thermal and Fluid Science, 28(8): 863–875. doi:10.1016/j.expthermflusci.2004.01.003.

Galindo, J., Serrano, J. R., Guardiola, C., Blanco- Rodriguez, D., & Cuadrado, I. G. (2011). An on-engine method for dynamic characterisation of NOx concentration sensors. Experimental Thermal and Fluid Science, 35(3): 470–476. doi: 10.1016/j.expthermflusci.2010.11.010

Ganesan, V. (1996). Internal combustion engines. New York: McGraw-Hill.

Goldsworthy, L. (2012). Combustion behaviour of a heavy duty common rail marine diesel engine fumigated with propane. Experimental Thermal and Fluid Science, 42: 93–106. doi: 10.1016/j.expthermflusci.2012.04.016.

He, W., Wu, Y., Peng, Y., Zhang, Y., Ma, C., & Ma, G. (2013). Influence of intake pressure on the performance of single screw expander working with compressed air. Applied Thermal Engineering, 51(1–2): 662 – 669. doi: https://dx.doi.org/10.1016/j.applthermaleng.2012.10.013.

Heywood, J. B. (1988). Internal combustion engine fundamentals. New York: McGraw-Hill.

Huang, R. F., Yang, H. S., & Yeh, C.-N. (n.d.). In- cylinder flows of a motored four-stroke engine with flat-crown and slightly concave-crown pistons. Experimental Thermal and Fluid Science, 32(5): 1156–1167.

Huang, X., Zhang, X., & Richards, S. K. (2008). Adaptive mesh refinement computation of acoustic radiation from an engine intake. Aerospace Science and Technology, 12(5): 418–426. doi: 10.1016/j.ast.2007.09.004

Ivanov, A. V., Trebunskikh, T. V., & Platonovich, V. V. (2013). Validation Methodology for Modern CAD-Embedded CFD Code: from Fundamental Tests to Industrial Benchmarks. Presented at the NAFEMS World Congress 2013.

Ji, C., & Wang, S. (2009). Effect of hydrogen addition on combustion and emissions performance of a spark ignition gasoline engine at lean conditions. International Journal of Hydrogen Energy, 34(18): 7823–7834. doi: 10.1016/j.ijhydene.2009.06.082.

Jia, M., Xie, M., Wang, T., & Peng, Z. (2011). The effect of injection timing and intake valve close timing on performance and emissions of diesel PCCI engine with a full engine cycle CFD simulation. Applied Energy, 88(9): 2967–2975. doi: 10.1016/j.apenergy.2011.03.024.

Li, T., Deng, K., Peng, H., & Wu, C. (2013). Effect of partial-heating of the intake port on the mixture preparation and combustion of the first cranking cycle during the cold-start stage of port fuel injection engine. Experimental Thermal and Fluid Science, 49: 14–21. doi: 10.1016/j.expthermflusci.2013.03.001.

Masi, M. (2010). Measurement of the effect on brake performance of the intake and exhaust system components in a motorbike high speed racing engine. Applied Acoustics, 71(1): 1–10. doi: 10.1016/j.apacoust.2009.07.011.

Maurya, R. K., & Agarwal, A. K. (2011). Experimental investigation on the effect of intake air temperature and air–fuel ratio on cycle-to-cycle variations of HCCI combustion and performance parameters. Applied Energy, 88(4): 1153–1163. doi:10.1016/j.apenergy.2010.09.027.

Navidi, W. C. (2010). Principles of statistics for engineers and scientists. Dubuque, IA: McGraw-Hill.

Pulkrabek, W. W. (2004). Engineering fundamentals of the internal combustion engine. Upper Saddle River, N.J.: Pearson Prentice Hall.

Rajesh, S., Raghavan, V., Shet, U. S. P., & Sundararajan, T. (2008). Analysis of quasi-steady combustion of Jatropha bio-diesel. International Com - munications in Heat and Mass Transfer, 35(9): 1079–1083. doi: 10.1016/j.icheatmasstransfer.2008.05.016

Sprei, F., Karlsson, S., & Holmberg, J. (2008). Better performance or lower fuel consumption: Technological development in the Swedish new car fleet 1975–2002. Transportation Research Part D: Transport and Environment, 13(2): 75–85. doi: 10.1016/j.trd.2007.11.003.

Taylor, C. F. (1985). The internal-combustion engine in theory and practice. Cambridge, Mass.: The MIT Pres.

Toyota L engine. (2013). In Wikipedia, the free encyclopedia. [Online URL: https://en.wikipedia.org/w/index.php?title=Toyota_L_engine&oldid=555620629] accessed on June 18, 2013.
Wang, S., Ji, C., Zhang, B., & Liu, X. (2012). Performance of a hydroxygen-blended gasoline engine at different hydrogen volume fractions in the hydroxygen. International Journal of Hydrogen Energy, 37(17): 13209–13218. doi: 10.1016/j.ijhydene.2012.03.072

Wu, C.-W., Chen, R.-H., Pu, J.-Y., & Lin, T.-H. (2004). The influence of air–fuel ratio on engine performance and pollutant emission of an SI engine using ethanol–gasoline-blended fuels. Atmospheric Environment, 38(40): 7093–7100. doi: 10.1016/j.atmosenv.2004.01.058.

Xue, J., Grift, T. E., & Hansen, A. C. (2011). Effect of biodiesel on engine performances and emissions. Renewable and Sustainable Energy Reviews, 15(2): 1098–1116. doi: 10.1016/j.rser.2010.11.016.

Xu-Guang, T., Hai-Lang, S., Tao, Q., Zhi-Qiang, F., & Wen-Hui, Y. (2012). The impact of common rail system’s control parameters on the performance of high-power diesel. Energy Procedia, 16, Part C, 2067–2072. doi: 10.1016/j.egypro.2012.01.314.