Bioethanol Production from Shorea robusta (Sal) Seeds using Zymomonas mobilis MTCC92

Main Article Content

Ankita Choudhary
Shubhra Tiwari
Shailesh Kumar Jadhav
Kishan Lal Tiwari

Abstract

Bioethanol is a viable alternative to fossil fuels. It is an alcohol fermented from sugars, starches or from cellulosic biomass. Bioethanol is a renewable liquid fuel for motor vehicles because it displaces the use of fossil fuels by recycling the carbon dioxide that is released when it is combusted as fuel. The objective of the work is to produce bioethanol from Shorea robusta (Sal) seeds using Zymomonas mobilis MTCC92. The effects of incubation period, temperature, pH and nutrients were evaluated.  It was found that after 72 hours of fermentation at temperature 37°C, pH 4 the production of bioethanol was enhanced and addition of sulphur and phosphorus supported the bioethanol production.

Downloads

Download data is not yet available.

Article Details

How to Cite
Choudhary, A., Tiwari, S., Jadhav, S. K., & Tiwari, K. L. (2016). Bioethanol Production from Shorea robusta (Sal) Seeds using Zymomonas mobilis MTCC92. Science, Engineering and Health Studies, 10(3), 9–14. https://doi.org/10.14456/sustj.2016.7
Section
Research Articles

References

Asli, M. S. (2010). A study on some efficient parameters in batch fermentation of ethanol using Saccharomyces cerevisiae SCI extracted from fermented saihe sardast pomace. African Journal of Biotechnology, 9(20): 2906-2912.

Balat, M., and Balat, H. (2009). Recent trends in global production and utilization of bio-ethanol fuel. Applied Energy, 86(11): 2273-2282.

Beliya, E., Tiwari S., Jadhav, S. K., and Tiwari, K. L. (2013). De-oiled rice bran as a source of bioethanol. Energy Exploration and Exploitation, 31(7): 771-782.

Behera, S., Mohanty, R. C., and Ray, R. C. (2010) Ethanol fermentation of mahula (Madhuca latifolia) flowers using free and immobilized bacteria Zymomonas mobilis MTCC 92, Biologia, 65(3): 416-421.

Bowden, K., Heliron, I. M., Jones, E. R. H., and Weedon., B. C. L. (1946). Researches on Acetylenic compounds Part 1. The preparation of acetylenic ketones and oxidation of acetylenic carbinols and glycols. Journal of the Chemical Society: 39-45.

Demirbas, A. (2005). Bioethanol from cellulosic materials: A renewable motor fuel from biomass. Energy Sources, 27: 327-337.

Dumsday, G. J., Jones, K., Stanleyand., G. A., and Pamment, N. B. (1997). Recombinant organisms for ethanol production from hemicellulosic hydrolysates, a review progress. Australian Biotechnology, 7: 285-295.

Fogarty, J., and McCally, M. (2010). Health and safety risks of carbon capture and storage. JAMA, 303: 67–69.

Gunasekaran, P., Krunakaran, T., Kamini, N. R., and Mukundan, A. (1990). Current status and prospects of an ethanol producer Zymomonas mobilis. Indian Journal of Microbiology, 30: 107-133.

Hagerdal, H. B., Gale, M., Gorwa-Grauslund, M. F., Liden, G., and Zacchi, G. (2006). Bioethanol: The fuel of tomorrow from the residues of today. Trend Biotechnology, 24(12): 549-556.

Inderwildi, O. R., and King, D. A. (2009). Quo Vadis biofuel. Energy and Environmental Science 2: 343-346.

Jones, A. M., and Ingledew, W. M. (1994). Fuel alcohol production: Appraisal of nitrogenous yeast foods for very high gravity wheat mash fermentation. Process Biochemistry, 29: 483-488.

Jorgensen, H. (2009). Effect of nutrients on fermentation of pretreated wheat straw at very high dry matter content by Saccharomyces cerevisiae. Applied Biochemistry and Biotechnology, 153: 44-57.

Laopaiboon, L., Nuanpeng, S., Srinophakun, P., and Klanrit, P. (2009). Ethanol production from sweet sorghum juice using very high gravity technology:Effects of carbon and nitrogen supplementations. Bioresource Technology, 1001: 4176-4182.

Lee, J. (1997). Biological conversion of lignocellulosic biomass to ethanol. Journal of Biotechnology, 56: 1–24.

Nejadkoorki, F., Nicholson, K., Lake, I., and Davies, T. (2008). An approach for modeling CO2 emissions from road traffic in urban areas. Science of the Total Environment, 406: 269–278.

Olsson, L., and Higerdal, B. H. (1996). Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme and Microbial Technology, 18: 312-331.

Pandey, A.,Tiwari, S., Tiwari, K. L., and Jadhav, S. K. (2013). Bioconversion of lignocellulosic azolla into bioethanol. Journal of Applied Phytotechnology in Environmental Sanitation, 2(2): 59-64.

Periyasamy, S., Venkatachalam, S., Ramaswamy, S., and Srinivasam, V. (2009). Production of bioethanol from sugar molasses using Saccharomyces cerevisiae. Modern Applied Science, 3(8): 32-37.

Pharmacopoeia of India. (1985). The Indian Pharmacopoeia,3rd ed., pp. 113-115. Delhi: Controller of Publications, Government of India.

Pimentel, D. and Patzek, T. W. (2005). Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower. Natural Resources Research, 14(1): 65-76.

Rogers, P. L., Lee, K. J., and Tribe, D. E.(1980). High productivity ethanol fermentations with Zymomonas mobilis. Process Biochemistry, 15: 7-11.

Saigal, D. (1993). Yeast strain development for ethanol production. Indian Journal of Microbiology, 33 :159-168.

Saini, J. K., Saini, R., and Tewari, L. (2015). Lignocellulosic agriculture wastes as biomass feedstocks for second generation bioethanol production: concepts and recent developments. 3Biotech, 5: 337-353.

Tahir, A., Aftab M., and Farasat T., (2010). Effect of culture conditions on ethanol production by locally isolated Saccharomyces cerevisiae Bio-07. Journal of Applied Pharmacy, 3(2): 72-78.

Tewfik, S. R. (2004). Biomass utilization facilities and biomass processing technologies. Energy Education Science Technology, 14: 1-19.

Thauer, R. K., Jungermann, K., and Decker, K. (1977). Energy conservation in chemotrophic anaerobic bacteria. Bacterial Review, 41(1): 100-180.

Tiwari, K. L., Jadhav, S. K., and Tiwari, S. (2010). The effect of temperature variation in the bioethanol production process. Bioprocess Journal, 9(1): 53-54.

Tiwari, S., Jadhav, S. K., and Tiwari, K. L. (2012). Production of bioethanol from “Jatropha Oil Cake. Researcher, 4(7): 7-10.

Tiwari, S., Jadhav, S. K., and Tiwari, K. L. (2013). Comparative study of bioethanol production from different carbohydrate sources. Researcher, 5(12): 219-221.

Tiwari, S., Jadhav, S. K, Sharma, M., and Tiwari, K. L. (2014). Fermentation of waste fruit for bioethanol production. Asian Journal of Biological Science, 7: 30-34.

Tiwari, S., Jadhav, S. K., and Tiwari, K. L. (2015). Bioethanol production from rice bran with optimization of parameters by Bacillus cereus McR-3. International Journal of Environmental Science Technology, 12: 3819-3826.

Tofighi, A., Assadi, M., and Karizi, Z. (2014). Bioethanol production by a novel autochthonous thermo-tolerant yeast isolated from waste water. Journal of Environmental Health Science Engineering,12:107.

Torija, M. J., Rozes, N., Poblet, M., Guillamon, J. M., and Mas, A. (2003). Effects of fermentation temperature on the strain population of Saccharomyces cerevisiae. International Journal of Food Microbiology, 80: 47–53.

Yadav, J. B. (2003). Advanced practical physical chemistry, Goel publishing house unit of Krishna Prakashan media, Meerut, pp. 52-56.

Yoshwathana, N., Phuriphipat, P., Treyawutthiwat, P., and Eshtiaghi, M. (2010). Bioethanol production from rice straw. Energy Research Journal, 1: 26-31.