Prototype Program for Automatic Grain Measurement Based on Image Processing

Authors

  • พิศณุ คูมีชัย กองวิชาวิศวกรรมไฟฟ้า ฝ่ายศึกษา โรงเรียนนายเรือ
  • Sudhibhum Yaowiwat

Keywords:

Mechanical properties, Metal grain size measurement program, Digital image processing

Abstract

The parts of the ship's structure and machinery are determined according to the conditions of use under different environmental conditions. Ship structures and machinery parts have a wide range of properties, such as mechanical properties. Properties relationship between stress and strain chemical properties and other properties which mechanical properties such as hardness (Hardness) and toughness (Strength) are important components of ship structures and machinery. In particular, the grain size of the metal structure greatly affects the mechanical properties of the metal. At present, structural analysis and testing can be performed manually to verify the properties, but it is time consuming and time consuming to verify. Thus, an idea was born to create a prototype automatic grain size measurement program for metals and alloys by means of digital image processing. To reduce the measurement error that has occurred due to the error of the meter, save time, save resources and increase the speed of inspection.

References

[1] American Society for Testing and Materials. Annual book of ASTM standards. Vol. 00.01. Easton, MD : ASTM, 1996, p. iii-xii, 124, 1247.
[2] ชัยยะ ปราณีตพลกรัง. “การพัฒนาโปรแกรมคอมพิวเตอร์เพื่อใช้ในการวัดขนาดเกรนตามมาตรฐาน ASTM E 1382 โดยใช้กระบวนการทางภาพและการวิเคราะห์ภาพ”. Vol 1 (2545): วารสารวิศวกรรมศาสตร์ ราชมงคลธัญบุรี ปีที่ 1 ฉบับที่ 1 พ.ศ 2545. 9-16.
[3] ASTM Standard E112-96, Standard test methods for determining average grain size, in: ASTM International, 2004.
[4] ASTM Standard E1382-97, Standard test methods for determining average grain size using semiautomatic and automatic image analysis, in: ASTM International, 2010.
[5] Rafael C. Gonzalez & Richard E. Woods, Digital Image Processing, New Jersey: Pearson Education, 2010.
[6] S. Dutta, A. Das, K. Barat, H. Roy, Automatic characterization of fracture surfaces of AISI 304LN stainless steel using image texture analysis, Measurement 45 (5) (2012) 1140–1150.
[7] H. Peregrina-Barreto, I.R. Terol-Villalobos, J.J. Rangel-Magdaleno, A.M. Herrera-Navarro, L.A. Morales-Hernández, F. Manríquez-Guerrero, Automatic grain size determination in microstructures using image processing, Measurement 46 (2013) 249–258.
[8] W. Benesova, A. Rinnhofer, G. Jakob, Determine the Average Grain Size of Super-Alloy Micrographs, IEEE International Conference on Image Processing Oct. 2006 2749–2752.
[9] Diógenes, Alysson N, Hoff, Eduardo A. and Fernandes, Celso P., “Grain size measurement by image analysis: An application in the ceramic and in the metallic industries,” 18th International Congress of Mechanical Engineering November 6-11, 2005, Ouro Preto, MG.
[10] V.García-García, I.Mejía, F.Reyes-Calderón., “Quantitative metallographic characterization of welding microstructures in Ti-containing TWIP steel by means of image processing analysis,” ScienceDirect, Materials Characterization Volume 147, January 2019, Pages 1-10.
[11] Jao P.Papa, Rodrigo Y.M.Nakamura, Victor Hugo C.de Albuquerque, Alexandre X.Falcão, and João Manuel R.S.Tavares., “Computer techniques towards the automatic characterization of graphite particles in metallographic images of industrial materials,” ScienceDirect, Expert Systems with Applications Volume 40, Issue 2, 1 February 2013, Pages 590-597.

Published

2021-12-30

How to Cite

คูมีชัย พ., & Yaowiwat, S. (2021). Prototype Program for Automatic Grain Measurement Based on Image Processing . Science Technology and Innovation Journal, 2(6), 10–21. Retrieved from https://li01.tci-thaijo.org/index.php/stij/article/view/252614

Issue

Section

Research Articles