Estimation of the Average Height of Forest Stand Using Digital Elevation Model in Khlong Lan National Park, Kamphaeng Phet Province

Main Article Content

Wilailak Srisoontorn
Kankhajane Chuchip
Prasong Saguantam

Abstract

The objectives of this study were to evaluate commonly used digital elevation models (DEM) both in form of digital terrain model (DTM) and digital surface model (DSM) affected by forest canopy and to examine the possibility of using the difference in value between DTM and DSM for estimating the average tree height of forest stands in Khlong Lan National Park, Kamphaeng Phet Province. To do this, global GDEM and SRTM were adopted to test in the study as well as local DEMs, namely a DEM prepared by the Royal Thai Survey Department (RTSD DEM) and a DEM prepared by the Land Development Department (LDD DEM). The difference in value of each pairs of DEMs was determined. Selected vegetation indices, namely NDVI, SAVI, and RVI were analyzed using Landsat OLI image. Additionally, the correlation between the difference in value of DEMs and vegetation indices has been performed. Then, a vegetation index image that had highest correlation value was classified into different strata of forest stand. Fourty 17.84m-circular-plots were randomly established in each forest stratum in order to measure tree heights. The difference in value between DTM and DSM that was highly correlated with vegetation index and the average height of forest stands were used to perform regression analysis. Derived regression model was then used to estimate the average tree height of forest stands for the whole area of the national park.


It was found that the difference in value of RTSD DEM and LDD DEM is correlated with vegetation indices higher than the global DEMs. The correlation coefficients are 0.57, 0.50 and 0.59 for NDVI, SAVI, and RVI, respectively. The derived model is gif.latex?\bar{h}c = 2.2826 + 0.81gif.latex?\bar{h}spc (where gif.latex?\bar{h}c is the average height of trees measured from model, gif.latex?\bar{h}spc is the difference in value of local DEMs). The coefficient of determination is about 0.69. Using the model, the height of forest stand of the study area was mapped. The average tree height is estimately 16.86 meters, with root mean square error (RMSE) of 2.37, index of agreement (d) of 0.48 and mean absolute error (MAE) of -2.05.

Article Details

How to Cite
Srisoontorn, W., Chuchip, K., & Saguantam, P. (2017). Estimation of the Average Height of Forest Stand Using Digital Elevation Model in Khlong Lan National Park, Kamphaeng Phet Province. Thai Journal of Forestry, 36(2), 87–97. Retrieved from https://li01.tci-thaijo.org/index.php/tjf/article/view/246857
Section
Original Articles

References

กลุ่มสำรวจทรัพยากรป่าไม้. 2555. การสำรวจทรัพยากรป่าไม้ของประเทศไทย. ส่วนสำรวจและวิเคราะห์ทรัพยากรป่าไม้ สำนักฟื้นฟูและพัฒนาพื้นที่อนุรักษ์ กรมอุทยานแห่งชาติสัตว์ป่า และพันธุ์พืช, กรุงเทพฯ.
สุเพชร จิรขจรกุล. 2555. เรียนรู้ระบบสารสนเทศภูมิศาสตร์ด้วยโปรแกรม ArcGIS 10.1 for Desktop. พิมพ์ครั้งที่ 1. ภาควิชาเทคโนโลยีชนบท คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยธรรมศาสตร์ ศูนย์รังสิต, ปทุมธานี.
สำนักงานนโยบายและแผนทรัพยากรธรรมชาติและสิ่งแวดล้อม. 2558. โครงการเตรียมรับมือและป้องกันผลกระทบจากการเปลี่ยนแปลงสภาพภูมิอากาศที่อาจมีต่อระบบนิเวศและสิ่งแวดล้อมแหล่งธรรมชาติอันควรอนุรักษ์ ประเภทน้ำตก. กระทรวงทรัพยากรธรรมชาติและสิ่งแวดล้อม, กรุงเทพฯ.
Geo-Informatics and Space Technology Development Agency (Public Organization) - GISTDA. 2012. The Meaning of the Height Information Terrain. Available source: https://sites.google.com/site/ lidardemservice/khwam-hmay-khxng-khxmul-khwam-sungphumiprathes-thi-hi-brikar, October 8, 2015.
Huete, A. 1988. A Soil-adjusted vegetation Index (SAVI). Remote Sensing of Environment 25: 295-309.
Jordan, C.F. 1969. Derivation of leaf area index from quality measurements of light on the forest floor. Ecology 50: 663-666.
Krause, P., D.P. Boyle and F. Base. 2005. Comparison of Different Efficiency Criteria for Hydrological Model Assessment. Advances in Geosciences 5: 89-97.
Rouse, J.W., R.H. Haas, J.A. Schell and D.W. Deering. 1973. Monitoring vegetation systems in the Great Plains with ERTS. NASA SP-351I 309-317.
United States Geological Survey. 2015. Landsat Missions Timeline. Available source: http://landsat.usgs.gov/about_mission_history.php, October 8, 2015.
Willmott, C.J. 1982. Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society 63 (11): 1309-1369.
Walker, W.S., L.E. Pierce, J.M. Kellndorfer, M.C. Dobson, C.T. Hunsaker and J.A. Fites. 2004. A comparison of forest canopy height estimates derived from SRTM and TOPSAR in the Sierra Nevada of California. Geoscience and Remote Sensing Symposium 4: 2336- 2339