ความหนาแน่นฟลักซ์จากแม่เหล็กถาวรในต้นแบบตู้เย็นแม่เหล็กที่มีโรเตอร์แม่เหล็กอ่อน

Main Article Content

นวลจุฑา เนียมจันทร์
ชัยโรจน์ ใหญ่ประเสริฐ
ชิตณรงค์ ศิริสถิตย์กุล

Abstract

Abstract


Magnetic refrigerator is a new technology that can reduce the temperature beneath the room temperature by virtue of heat transfer from magnetocaloric materials in changing magnetic fields. In this research, the cooling system is composed of 4 neodymium-iron-boron permanent magnets and soft magnetic carbon low-carbon steels acting as pole faces, linkages between 2 bars of permanent magnets surrounding a soft magnetic rotor. The COMSOL Multiphysics program was used to simulate the distribution in magnetic flux density and analyze the optimum parameters in designing a magnetic refrigerator. The magnetic flux densities as high as 1.13 T and as low as 0.07 T were obtained by using (1) the width of the air gap to be occupied by magnetocaloric materials around 10 mm, (2) the width of the pole faces of about 15 mm, and (3) the approximate width of permanent magnets of 30 mm. 


Keywords: magnetic refrigerator; magnetocaloric effect; neodymium-iron-boron; low carbon steel; magnetic flux density

Downloads

Download data is not yet available.

Article Details

How to Cite
เนียมจันทร์ น., ใหญ่ประเสริฐ ช., & ศิริสถิตย์กุล ช. (2019). ความหนาแน่นฟลักซ์จากแม่เหล็กถาวรในต้นแบบตู้เย็นแม่เหล็กที่มีโรเตอร์แม่เหล็กอ่อน. Thai Journal of Science and Technology, 8(1), 1–9. https://doi.org/10.14456/tjst.2019.1
Section
วิทยาศาสตร์กายภาพ
Author Biographies

นวลจุฑา เนียมจันทร์

สาขาวิชาฟิสิกส์ สำนักวิชาวิทยาศาสตร์ มหาวิทยาลัยวลัยลักษณ์ ตำบลไทยบุรี อำเภอท่าศาลา จังหวัดนครศรีธรรมราช 80160

ชัยโรจน์ ใหญ่ประเสริฐ

สาขาวิชาฟิสิกส์ สำนักวิชาวิทยาศาสตร์ มหาวิทยาลัยวลัยลักษณ์ ตำบลไทยบุรี อำเภอท่าศาลา จังหวัดนครศรีธรรมราช 80160

ชิตณรงค์ ศิริสถิตย์กุล

สาขาวิชาฟิสิกส์ สำนักวิชาวิทยาศาสตร์ มหาวิทยาลัยวลัยลักษณ์ ตำบลไทยบุรี อำเภอท่าศาลา จังหวัดนครศรีธรรมราช 80160

References

รัตติกร ยิ้มนิรัญ และยงยุทธ เหล่าศิริถาวร, 2547, ตู้เย็นแม่เหล็ก, ว.ฟิสิกส์ไทย 21: 21-22.
Bjørk, R., Bahl, C.R.H., Smith, A. and Pryds, N., 2010, An optimized magnet for magnetic refrigeration, Int. J. Refrig. 33: 437-448.
Halbach, K., 1980, Design of permanent multipole magnets with oriented rare earth cobalt material, Nucl. Instrum. Meth. 169: 1-10.
Lorenz, L. and Kevlishvili, N., 2017, Designing of Halbach cylinder based magnetic assembly for a rotating magnetic refrigerator, Int. J. Refrig. 73: 246-256.
Lozano, J.A., Capovilla, M.S., Trevizoli, P.V., Engelbrecht, K., Bahl, C.R.H. and Barbosa Jr., J.R., 2016, Development of a novel rotary magnetic refrigerator, Int. J. Refrig. 68: 187-197.
Phromchuai, S., Sirisathitkul, C. and Jantaratana, P., 2014, Effect of gadolinium substitution on magnetocaloric properties of lanthanum strontium manganites, Dig. J. Nanomater. Bios. 9: 245-250.
Ryu, K.S., Nahm, S.H., Jung, J.K. and Baek, S.W., 2017, Design and fabrication of 2-T rotating Halbach magnet for magnetic refrigerator, J. Magn. 22: 65-68.
Tura, A. and Rowe, A., 2011, Permanent magnet magnetic refrigerator design and experimental characterization, Int. J. Refrig. 34: 628-639.
Tušek, J., Sarlah, A., Poredos, A. and Fefer, D., 2009, Optimization of the magnetic field in a magnetic refrigerator, Informacije Midem 39: 105-110.
You, Y., Guo, Y., Xiao, S., Yu, S., Ji, H. and Luo, X., 2016, Numerical simulation and performance improvement of a multi-polar concentric Halbach cylinder magnet for magnetic refrigeration, J. Magn. Magn. Mater. 405: 231-237.