ผลของซิลิกอนจากอุตสาหกรรมซีเมนต์ต่อการเจริญเติบโตและผลผลิตของข้าวพันธุ์ปทุมธานี 1 ภายใต้ระดับการให้น้ำที่แตกต่างกัน

Main Article Content

เวธนี วัฒนเดชเสรี
สมชาย ชคตระการ
พักตร์เพ็ญ ภูมิพันธ์
พฤกษ์ ชุติมานุกูล

Abstract

Abstract


Drought is considered to be a serious factor limiting rice production and quality. The objective of this study was to determine suitable amount of silicon application in soil for growth and yield and the effect of silicon on the resistance to drought stress of rice cv. Pathum Thani 1 under different water supply. A pot experiment was undertaken in factorial in CRD with 12 replications. The study factors were (1) different levels of water supply, corresponding to 100 (normal condition or control), 50, 25 and 12.5 % of full water supply, and (2) different levels of silicon, corresponding to 0, 50, 150, 300 and 500 kg/rai. The results showed that decreased water level as a result, the growth and yield components of rice decreased when comparing to those of the control. In addition, different levels of silicon also influenced both growth and yield of rice cv. Pathum Thani 1. Silicon at 300 kg/rai increased growth (plant height, root dry weight, shoot dry weight, tiller number per plant, photosynthetic rate, transpiration rate and stomatal conductance) and yield components (panicle number per plant, filled grains per panicle, 100 grain weight and yield per plant) of rice cv. Pathum Thani 1 when compared with other silicon level and it also reduced the undeveloped grains per panicle as a result, the productivity increases. It was, therefore, concluded that 300 kg/rai of silicon reduced the effect of toxicity from drought stress to rice cv. Pathum Thani 1 and it was also suitable for the growth and yield of rice cv. Pathum Thani 1. 


Keywords: growth; rice cv. Pathum Thani 1; silicon; yield; level of water supply

Downloads

Download data is not yet available.

Article Details

How to Cite
วัฒนเดชเสรี เ., ชคตระการ ส., ภูมิพันธ์ พ., & ชุติมานุกูล พ. (2019). ผลของซิลิกอนจากอุตสาหกรรมซีเมนต์ต่อการเจริญเติบโตและผลผลิตของข้าวพันธุ์ปทุมธานี 1 ภายใต้ระดับการให้น้ำที่แตกต่างกัน. Thai Journal of Science and Technology, 8(1), 31–42. https://doi.org/10.14456/tjst.2019.4
Section
วิทยาศาสตร์ชีวภาพ
Author Biographies

เวธนี วัฒนเดชเสรี

สาขาวิชาเทคโนโลยีการเกษตร คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยธรรมศาสตร์ ศูนย์รังสิต ตำบลคลองหนึ่ง อำเภอคลองหลวง จังหวัดปทุมธานี 12120

สมชาย ชคตระการ

สาขาวิชาเทคโนโลยีการเกษตร คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยธรรมศาสตร์ ศูนย์รังสิต ตำบลคลองหนึ่ง อำเภอคลองหลวง จังหวัดปทุมธานี 12120

พักตร์เพ็ญ ภูมิพันธ์

สาขาวิชาเทคโนโลยีการเกษตร คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยธรรมศาสตร์ ศูนย์รังสิต ตำบลคลองหนึ่ง อำเภอคลองหลวง จังหวัดปทุมธานี 12120

พฤกษ์ ชุติมานุกูล

สาขาวิชาเทคโนโลยีการเกษตร คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยธรรมศาสตร์ ศูนย์รังสิต ตำบลคลองหนึ่ง อำเภอคลองหลวง จังหวัดปทุมธานี 12120

References

ธวัชชัย ณ นคร, 2535, ความสัมพันธ์ระหว่างดิน น้ำ และพืช, เอกสารเพื่อการถ่ายทอดเทคโนโลยี ชุดความรู้เทคโนโลยีการพัฒนาที่ดิน, สำนักนิเทศและถ่ายทอดเทคโนโลยีการพัฒนาที่ดิน กรมพัฒนาที่ดิน กระทรวงเกษตรและสหกรณ์, กรุงเทพฯ.
พัชนี ชัยวัฒน์, Bottrel, D.G. และ Bernado, E.N.,2544, ผลของซิลิกอนในต้นข้าวต่อเพลี้ยกระโดดสีน้ำตาล, ว.การเกษตร 19(3): 179-211.
ยงยุทธ โอสถสภา, 2552, ธาตุอาหารพืช, พิมพ์ครั้งที่ 3, สำนักพิมพ์มหาวิทยาลัยเกษตรศาสตร์, กรุงเทพฯ.
สมชาย ชคตะการ, 2548, ข้าว ข้าวโพด ข้าวฟ่าง ข้าวสาลี, พิมพ์ครั้งที่ 1, บริษัท ก.พล (1996) จำกัด, กรุงเทพฯ.
Chen, W., Yao, X.Q., Cai, K.Z. and Chen, J., 2011, Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorp-tion, Biol. Trace Elem. Res. 142: 67-76.
Ding, T.P., Zhou, J.X., Wan, D.F., Chen, Z.Y. and Zhang, F., 2008, Silicon isoope fractionation in bamboo and its significance to the biogeochemical cycle of silicon, Geochim Cosmochim Acta 72: 1381-1395.
Emadian, S.F. and Newton, R.J., 1989, Growth enhancement of loblollypine (Pinus taeda L.) seedlings by silicon, Plant Physiol. 134: 98-103.
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. and Basra, S.M.A., 2009, Plant drought stress: Effects, mechanisms and management, Agron. Sustain. Dev. 29: 185-212.
Hanson, A.D., Peacock, W.J., Evans, L.T., Arntzen, C.J. and Khush, G.S., 1990, Drought resistance in rice, Nature 234: 2.
Hattori, T., Inanaga, S., Tanimoto, E., Lux, A., Luxova, M. and Sugimoto, Y., 2003, Silicon-induced changes in viscoelastic properties of sorghum root cell walls, Plant Cell Physiol. 44: 743-749.
Hossain, K. A., Horiuchi, T. and Miyagawa, S., 2001, Effect of silicate materials on growth and grain yield of rice plants grown in clay loam and sandy loam soils, J. Plant Nutr. 24: 1-13.
Liu, J. X., Liao, D.Q., Oane, R., Estenor, L., Yang, X.E., Li, Z.C. and Bennett, J., 2006, Genetic variation in the sensitivity of anther dehiscence to drought stress in rice, Field Crops Res. 97: 87-100.
Lobato, A.K.S., Costa, R.C.L., Neto, M.A.M., Oliveira, N.C.F., Santos, F.B.G., Alves, G.A.R., Freitas, J.M.N., Cruz, F.J.R., Marochio, C.A. and Coimbra, G.K., 2009, Responses of the photosynthetic pigments and carbon metabolism in Vigna unguiculata cultivars submitted to water deficit, Res. J. Biol. Sci. 4: 593-598.
Manal, M.E., Hemmat, E.K., Nesma, M.H. and Abdelsalam, E.D., 2014, Effect of selenium and silicon on yield quality of rice plant grown under drought stress, AJCS. 8: 596-605.
Ming, D.F., Pei, Z.F., Naeem, M.S., Gong, H.J. and Zhou, W.J., 2012, Silicon alleviates PEG-induced water-deficit stress in upland rice seedlings by enhancing osmotic adjustment, J. Agron. Crop Sci. 198: 14-26.
Nayer, P.K., Misra, A.K. and Patnaik, S., 1975, Rapid microdetermination of silicon in rice plant, Plant Soil 42: 497-494.
Parida, A.K., Dagaonkar, V.S., Phalak, M.S. and Auramgabadkar, L.P., 2007, Alterations in photosynthetic pigments, protein and osmotic components in cotton genotypes subjected to 112 responses of organisms to water stress short-term drought stress followed by recovery, Plant Biotechnol. Rep. 1: 37-48.
Reddy, A.R., Chaitanya, K.V. and Vivekanandanb, M, 2004, Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants, J. Plant Physiol. 161: 1189-1202.
SGS, 2015, Analysis report of Taiheiyo International (Thailand) Co., Ltd.
Siddique, M.R.B., Hamid, A. and Islam, M.S., 2000, Drought stress effects on water relations of wheat, Bot. Bull. Acad. Sin. 41: 35-39.
Smirnoff, N., 1995, Antioxidant Systems and Plant Response to the Environment, In Smirnoff, V. (Ed.), Environment and Plant Metabolism: Flexibility and Acclimation, BIOS Scientific Publishers, Oxford.
Sonobe, K., Hattori, T., An, P., Tsuji, W., Eneji, A.E., Kobayashi, S., Kawamura, Y., Tanaka, K. and Inanaga, S., 2011, Effect of silicon application on sorghum root responses to water stress, J. Plant Nutr. 34: 71-82.
Yamaji, N., Mitatni, N. and Ma, J.F., 2008, A transporter regulating silicon distribution in rice shoots, Plant Cell 20: 1381-1389.
Yamaji, N., Chiba, Y., Mitani-Ueno, N. and Ma, J.F., 2012, Functional characterization of a silicon transporter gene implicated in silicon distribution in barley, Plant Physiol. 160: 1491-1497.
Zhang, C., Li, X., He, Y., Zhang, J., Yan, T. and Liu, X., 2017, Physiological investigation of C4-phosphoenolpyruvate-carboxylase-introduced rice line shows that sucrose metabolism is involved in the improved drought tolerance, Plant Physiol. 115: 328-342.